STORMWATER MANAGEMENT REPORT

North Woods Village Planned Residential Development 25 Colonial Drive

Killingly, Connecticut 06241

Prepared For: Canterbury Holdings, LLC 18 Gavin Way Lisbon, Connecticut

Revised: September 7, 2023 July 7, 2023

Prepared By: **CLA Engineers, Inc.** Consulting Engineers 217 Main Streat

317 Main Street Norwich, CT 06360 Ph: 860-886-1966 F: 860-886-9165 www.claengineers.com

Kyle Haubert, P.E.

STORMWATER MANAGEMENT REPORT

North Woods Village Planned Residential Development 25 Colonial Drive Killingly, Connecticut

Prepared for Canterbury Holdings, LLC

TABLE OF CONTENTS

1.0	Narrative	1
2.0	Stormwater Quality	5
3.0	Groundwater Recharge	6
4.0	Stormwater Management	7
5.0	Operations and Maintenance Schedule	8

LIST OF FIGURES

Figure 1:Location Map (USGS)Figure 2:2019 Aerial MapFigure 3:Existing Conditions WatershedsFigure 4:Post Development Watersheds

CALCULATIONS

Hydrograph Reports - 2, 10, 25, 50, and 100-Year Frequencies

APPENDICES

- Appendix A: Calculation Support Information
- Appendix B: Soil Resource Report

CLA Engineers, Inc.

Civil • Structural • Survey

1.0 Narrative

The proposed project is the construction of a planned residential development named North Woods Village located at 25 Colonial Drive, Killingly, CT. The location of the site in reference to the USGS Quad Map is attached as Figure 1, and in relation to the 2019 Connecticut orthoimagery as Figure 2. A location map is included on the Site Development Plans. The parcel was depicted as Lot 4 of a subdivision prepared for Upper Maple LLC in 2004.

Existing Conditions

The existing property is approximately 6.57-acres of undeveloped land located at the east end of Colonial Drive. The land is comprised of lawn, light brush, and woodlands. An aerial view of the existing property and surrounding area as they currently exist is attached as Figure 2. Existing ground is undulating with elevations ranging from approximately 288 to 262. Stormwater from the western side of the site and abutting properties flows to an existing infiltration basin that was constructed as part of the original 2004 subdivision. Stormwater from the southern and eastern portions of the site runs via sheet flow off site to undeveloped land. An existing conditions watershed map and stormwater flow paths are included as Figure 3. A summary of the existing condition peak stormwater flow rates from the site is included in Table 2.

Proposed Development

The proposed development includes the construction of a 14 residential duplexes and 2 triplexes with a private access drive over approximately 5.6-acres of the property. The proposed site improvements are depicted on the Site Improvement Plans. The buildings will be served with municipal sewer and water. The project includes a central common open space area that will include two pavilions, a stone dust sidewalk, open lawn area, and landscaping. The proposed site grading has been designed to match the existing drainage patterns as closely as possible. Stormwater onsite will be collected in a standard catch basin and culvert drainage system. Two stormwater basins and subsurface infiltration chambers have been incorporated into the design to mitigate peak stormwater flow rates from the additional impervious areas. The existing infiltration basin at the end of Colonial Drive will be modified as shown on the Site Improvement Plans to accommodate the new buildings and provide additional storage volume. This basin provides enough storage volume to mitigate peak stormwater flow rates and stormwater volume without discharge through the 100-year storm. Due to the available volume and permeable soils the basin provides the required water quality volume and groundwater recharge volume as well. A new infiltration basin will be constructed at the southern end of the site to mitigate peak flow rates, runoff volume and provide the required water quality volume. Roof runoff from several of the building in the southern portion of the site will discharge to subsurface infiltration chambers as depicted on the Site Improvement Plans.

Analysis:

The overall site stormwater analysis was performed for the 2-year, 10-year, 25-year, 50-year, and 100-year frequency storms using the USDA/NRCS TR-55 method to determine the peak flow rates from the existing and post development site. Precipitation data, rainfall intensities, and distribution were acquired from NOAA Atlas 14, Volume 10, Version 3 for the site, and are included in Appendix A. The soils onsite fall into the hydrologic soil group A. A copy of the soil mapping is included in Appendix B. The runoff curve numbers for the site are based on the ground cover and hydrologic soil group and are included in Table 1.

Table 1 – Curve Numbers

Runoff curve numbers for the existing and post development conditions were compiled from Table 2-2 of the USDA/NRCS TR-55 manual a portion is included in Appendix A. The following curve numbers were used for the calculations:

Existing Conditions	CN
Impervious (roofs, pavement, etc.)	98
Open Space (lawns, etc.), Good Conditions, HSG A	39
Woods, Good Conditions, HSG A	30
Post Development	CN
Post Development Impervious (roofs, pavement, etc.)	<u>CN</u> 98

Weighted curve number calculations are included in the hydrograph reports.

To mitigate the peak stormwater runoff rates from the post development site, stormwater will be routed through the existing infiltration basin (PR Infiltration Basin #1) and a proposed infiltration basin onsite (PR Infiltration Basin #2). Additionally, stormwater runoff from the roofs within Watershed #3 will be directed to subsurface infiltration chambers (PR Roof Infiltration). Test pits were excavated onsite as shown on the Site Development Plans. Permeability samples were taken from test pits; copies of the permeability test data and sieve analysis are included in Appendix A. The 2004 Connecticut Stormwater Quality Manual recommends that the permeability rates be cut in half for the stormwater analysis as a factor of safety. The following permeability rates were used in the calculations:

Permeability	50% Reduction
17.5 FT/Day	8.75 FT/Day (4.38 IN/Hr)
0.85 FT/Day	0.425 FT/Day (0.21 IN/Hr)
	17.5 FT/Day

Stormwater Management Report North Woods Village Planned Residential Development

25 Colonial Drive, Killingly, Connecticut

CLA Engineers, Inc.

Roof Infiltration Chambers(Sample #1, Basin #6):8.3 FT/Day4.15 FT/Day (2.0 IN/Hr.)

A summary of the existing condition and post development peak flow rates from the site are included in Table 2. Hydrographs detailing the calculations are included in the Calculations section.

WATERSHED 1	Peak Flow Rate (CFS)					
<u>WATERSHED 1</u>	2-Year	10-Year	25-Year	50-Year	100-Year	
Existing Condition (Hyd. #2) :	0.000	0.000	0.000	0.000	0.000	
Post Development (Hyd. #7) :	0.000	0.000	0.000	0.000	0.000	
Change :	0.000	0.000	0.000	0.000	0.000	

|--|

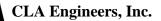
WATERSHED 2	Peak Flow Rate (CFS)				
WATERSHED 2	2-Year	10-Year	25-Year	50-Year	100-Year
Existing Condition (Hyd. #3) :	0.000	0.006	0.026	0.058	0.199
Post Development (Hyd. #8) :	0.000	0.014	0.089	0.182	0.370
Change :	0.000	0.008	0.063	0.124	0.171

WATEDSHED 2	Peak Flow Rate (CFS)					
WATERSHED 3	2-Year	10-Year	25-Year	50-Year	100-Year	
Existing Condition (Hyd. #4) :	0.000	0.009	0.047	0.104	0.341	
Post Development (Hyd. #9) :	0.001	0.020	0.089	0.173	0.302	
Change :	0.001	0.011	0.042	0.069	-0.039	

<u>Watershed 1:</u> PR Infiltration Basin #1 will have no discharge across all storm events, matching the existing conditions. The stormwater will be stored in the basin and will infiltrate into the ground.

<u>Watershed 2:</u> Stormwater will sheet flow toward the east from the rear yards of units $\#15 \ \#17$ through $\#26 \ \#22$. The post development peak flow rates will increase across all storms with a maximum increase of $0.365 \ CFS \ 0.171 \ CFS$. This flow will be spread across the entire eastern side of the property toward undeveloped land. In our opinion the increase is negligible and will have no negative impact downstream.

<u>Watershed 3:</u> PR Infiltration Basin #2 has been sized to mitigate the peak discharge from this watershed. Sizing information is included in the calculations and details for the level spreader outlet are included on the drainage plans. Roof infiltration chambers have been incorporated into this watershed and have been sized to completely store and infiltrate the stormwater across all


CLA Engineers, Inc.

Civil • Structural • Survey

storm events. Peak stormwater flow rates leaving the site have been reduced across all storm events.

In our opinion, the proposed development will have no negative impact to the adjacent properties or to downstream infrastructure.

Stormwater will sheet flow toward the south from the rear yards of units #11 through #16, and the undeveloped land along the southern boundary. There is no proposed impervious area within this watershed. The post development peak flow rates vary depending on the storm event in comparison to the existing condition. This flow will be spread across the entire southern boundary toward undeveloped land. In our opinion the increase is negligible and will have no negative impact downstream.

2.0 Stormwater Quality

To meet the Connecticut DEEP stormwater quality requirements and Town MS4 requirements infiltration basins have been designed for the site in accordance with the 2004 Connecticut Stormwater Quality Manual to treat the proposed stormwater runoff.

Post Development Watershed 1

Stormwater runoff from post development watershed 1 will be directed to the existing modified infiltration basin (PR Infiltration Basin #1). This infiltration basin will completely store the stormwater runoff from all storm event. This available volume exceeds the required water quality volume for the watershed.

Post Development Watershed 2

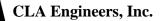
Stormwater runoff Post Development Watershed 2 will sheet flow off the eastern side of the site. There is no proposed impervious surfaces that are included in this watershed. Therefore there is no sediment loading from impervious areas that contribute to the runoff and water quality measures are not required or necessary.

Post Development Watershed 3

Stormwater runoff from Post Development Watershed 3 will be directed to PR Infiltration Basin 2. This watershed includes the southern portion of the private driveway. The basin volume available below the high level overflow exceeds the required water quality volume. The required water quality volume for this watershed is calculated as follows:

Stormwater runoff Post Development Watershed 3 will sheet flow off the southern side of the site. There is no proposed impervious surfaces that are included in this watershed. Therefore there is no sediment loading from impervious areas that contribute to the runoff and water quality measures are not required or necessary.

3.0 Groundwater Recharge


The required groundwater recharge volume for the site and the adjacent properties will be provided within the Infiltration Basins as follows:

Per DEP 2004 Storm Water Quality Manual: Hydrologic Soil Group Approach Required Ground Water Recharge Volume (GRV) = (D)(A)(I) / 12

GRV = groundwater recharge volume (ac-ft) D = depth of runoff to be recharged (in.) (table 7.4 of the manual) A = site area (acres) I = post-development site imperviousness (decimal)

A (total):8.5 ac. (entire site)A (impervious):1.95 ac.I = 1.95 ac. / 8.5 ac. = 0.23NRCS Soil Group "A": D = 0.4 in. (from table 7-4)GRV = (0.4 in)(8.5 ac.)(0.23) / 12 = 0.0652 ac-ft = 2,838 cf (required)Provided:Infiltration Basin #1 storage below the emergency outlet:63,309 cfInfiltration Basin #2 storage below the outlet:13,704 cfTotal=**63,309 cf**

The storage in the Infiltration Basin below the high level overflow, exceeds the required groundwater recharge volume

4.0 Stormwater Management

Stormwater Management & Pollution Prevention:

Provisions for stormwater management and pollution prevention are outlined on the plans and are as follows:

1. Pollution Prevention Team:

The <u>Owner</u> shall be responsible for carrying out the provisions of the plan.

2. Sweeping:

Parking lots, sidewalks, and other impervious surfaces shall be swept clean of sand and litter and any other pollutants at least twice per year

- a. Between November 15th and December 15th (after leaf fall)
- b. During April (after snow melt)
- 3. Outside Storage:

Accessories or equipment stored outside shall be covered or maintained to minimize the possibility of these materials or their residue passing to stormwater.

4. Washing:

No washing of vehicles, accessories, equipment, or appliances onsite.

- 5. Maintenance and Inspection of Stormwater Infrastructure:
 - a. Monthly inspection of stormwater structures and outfalls.
 - b. Clean sediment and debris from structures at least once per year during April.
 - c. Comply with the infiltration basin maintenance schedule.
- 6. Spills or Accidental Discharges:
 - a. Comply with State and Federal regulations to contain and clean up any spill or discharge and dispose of materials at an approved facility.
 - b. Contact Connecticut DEEP oil and chemical spill response division 860-424-3338.
 - c. The following steps should be performed as soon as possible
 - Stop the source of the spill
 - Contain the spill
 - Cover the spill with absorbent material such as kitty litter, saw dust, or oil absorbent pads. Do not use straw.
 - Dispose of absorber in accordance with Local and State regulations.

5.0 Operations and Maintenance Schedule

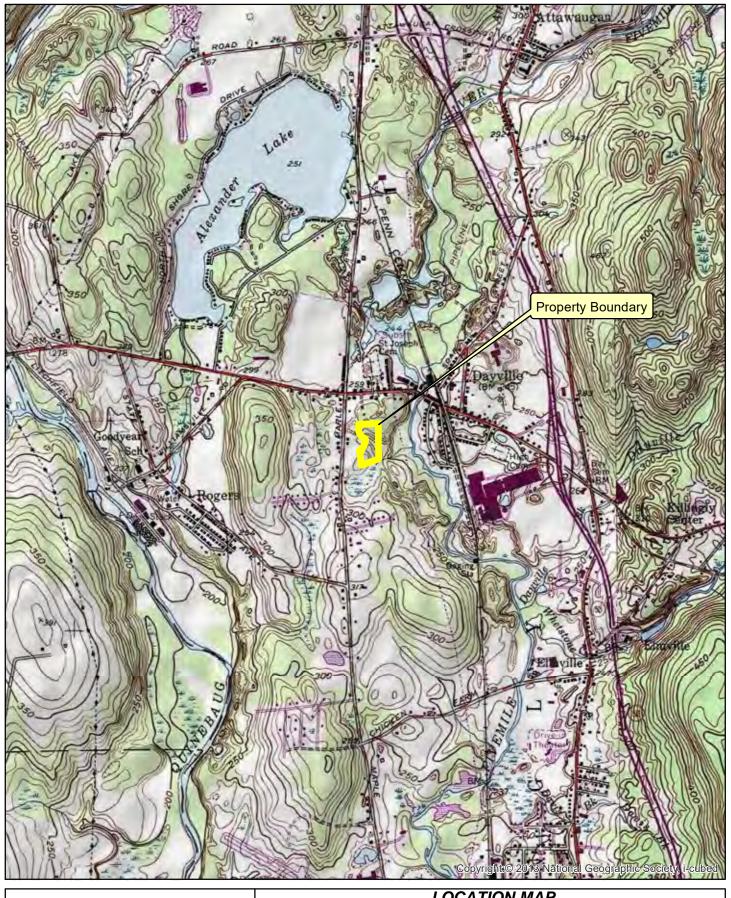
The following is a general operations and maintenance schedule for the stormwater infrastructure and project site.

Maintenance Schedule for Infiltration Basi	ins
Activity	Schedule
 Prior to new spring growth reaching a height of 2" (e.g., shortly after forsythia or redbud blooms), trim any material standing from the previous year close to the ground (approximately 2"). This will allow the soil to warm more quickly, which will stimulate the emergence and growth of native seedlings and reduce the likelihood of the meadow being invaded by shrubs. 	Second growing season
 Problem weeds should be hand pulled or spot sprayed with an approved herbicide, such as Rodeo® or Garlon® 3A. If you did not plant vines or spiny plants as part of your mix, be vigilant about controlling them. These are more easily pulled when they are young rather than after they have had two to three months of growth. Examples include bindweed, blackberry, multiflora rose, mile-a-minute and Japanese hops. Be equally vigilant about controlling other invasive species, such as autumn olive and Japanese knotweed. Special Circumstances 	
If you notice a heavy infestation of ragweed or foxtail in the second growing season, trim the meadow to a height of 8". Trimming should cease by mid-September.	
 For the basin and side slopes, inspect for invasive vegetation. Grassy weeds or persistent perennials can re-establish in these soils. Monitor and control weeds by hand pulling or spot spraying. 	Monthly
 Inspect for damage, undercut, or eroded area Monitor for sediment accumulation 	Semi-Annual inspection
 Repair undercut or eroded areas. Clean and remove debris & sediment from inlet and outlet structures 	As needed maintenance
 Inspect and clean debris & sediment in the basin Clean and remove debris from the plunge pools Mow side slopes. Close mowing throughout the regular growing season or extensive chemical use is not conducive to water quality improvement and wildlife habitat. Spring mowed vegetation can typically remain within basins providing cover for new emerging vegetation. 	Semi-annual

CLA Engineers, Inc.

Maintenance Schedule for Infiltration Cham	bers
Activity	Schedule
 Inspect infiltrators through the inspection ports for accumulated sediment 	 Between November 15th and December 15th (after leaf fall) During April (after snow melt)
 Remove sediment when depth exceeds 3". Jet the system clean with pressurized water though a culvert cleaning nozzle. Use a vac truck to remove sediment from the system. 	• As needed

Maintenance Schedule for Catch Basins		
Activity		Schedule
• Clean out sediment from catch basin and hydrodynamic separator	•	Between November 15 th and December 15 th (after leaf fall) During April (after snow melt)


Maintenance Schedule for Parking / Driveway Areas				
Activity	Schedule			
Sweep impervious areas	 Between November 15th and December 15th (after leaf fall) During April (after snow melt) 			
Remove and dispose of trash and debris onsite	Daily - As needed maintenance			

FIGURES

Stormwater Management Report North Woods Village, Planned Residential Development 25 Colonial Drive, Killingly, Connecticut

CLA Engineers, Inc.

Civil • Structural • Survey

CLA Engineers, Inc. CIVIL · STRUCTURAL · SURVEYING

317 Main Street 860-886-1966

Norwich, Connecticut claengineers.com

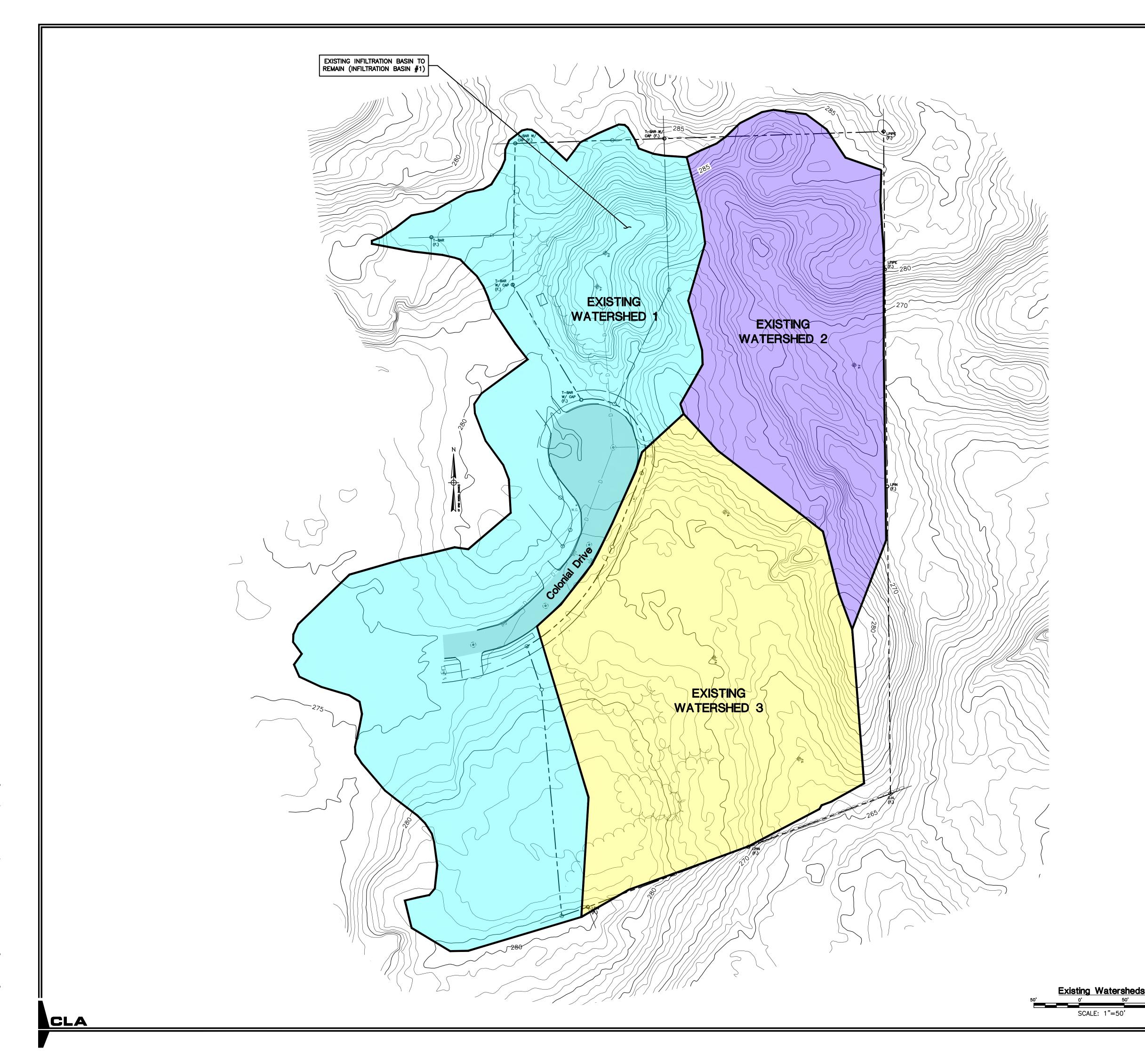
Stormwater Management Report North Woods Village 25 Colonial Drive, Killingly, CT Danielson Quad (#43)

LOCATION MAP

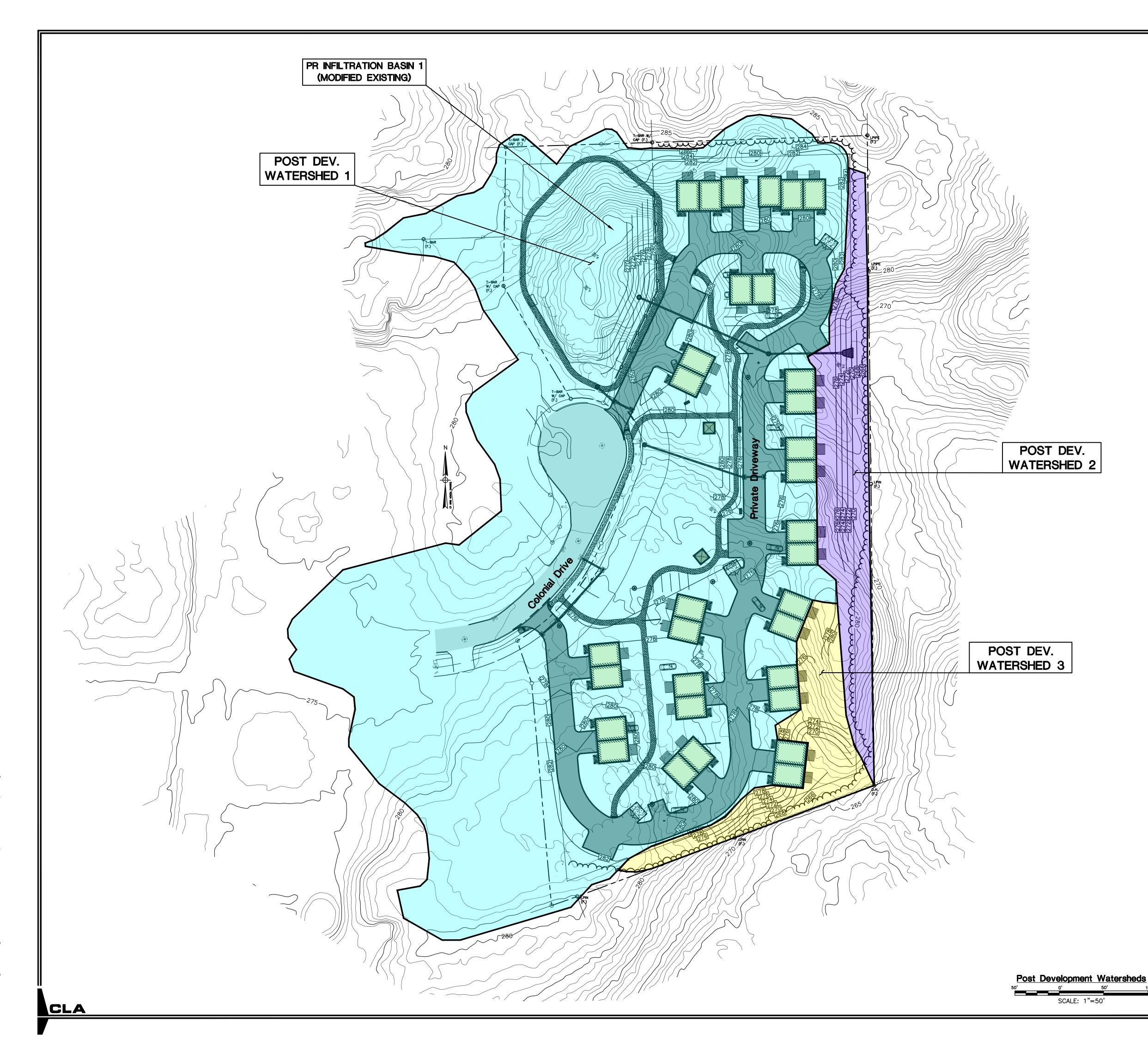
FIGURE

1

CLA Engineers, Inc. CIVIL · STRUCTURAL · SURVEYING


317 Main Street 860-886-1966 Norwich, Connecticut claengineers.com Stormwater Management Report North Woods Village 25 Colonial Drive, Killingly, CT

2019 AERIAL MAP


DATE: 7/7/2023 SCALE: 1 in = 100 ft SOURCE: USGS Quad

FIGURE

2

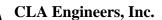

		CIVIL · STRUCTURAL · SURV	, Inc.
1 No.	9/7/2023 DATE	No Changes to This Figure317 Main StreetNorwich, CTREVISION(860)886-1966Fax (860)886	
		25 Colonial Drive Killingly, Connecticut 06241	Project No. CLA-7283
		Site Improvement Plan North Woods Village	Proj. Engineer K.J.H. Date: 7/7/2023
		Planned Residential Development Watershed Map - Existing Conditions	Figure No.

Image: 1 9/7/2023 Devel No. DATE Image: 1	opment Configuration REVISION CLA Engine CIVIL • STRUCTURAL • 317 Main Street Norwice (860) 886-1966 Fax (86)	SURVEYING eh, CT 06360
	25 Colonial Drive Killingly, Connecticut 06241 Site Improvement Plan	Project No. CLA-7283 Proj. Engineer K.J.H.
	North Woods Village Planned Residential Development Watershed Map - Post Development	Date: 7/7/2023 Figure No.

CALCULATIONS:

Hydrograph Reports 2, 10, 25, 50, and 100-Year Frequencies

Civil • Structural • Survey

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

2 - Year

Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing Watershed 1	
TR-55 Tc Worksheet	
Hydrograph No. 2, Reservoir, Ex Inf. Basin 1 Disch	
Pond Report - EX Infiltration Basin	
Hydrograph No. 3, SCS Runoff, Existing Watershed 2	
Hydrograph No. 4, SCS Runoff, Existing Waterhsed 3	
TR-55 Tc Worksheet	10
Hydrograph No. 6, SCS Runoff, Post Dev. Watershed 1	11
TR-55 Tc Worksheet	12
Hydrograph No. 7, Reservoir, Infiltr. Basin 1 Disch	13
Pond Report - PR Infiltration Basin 1	14
Hydrograph No. 8, SCS Runoff, Post Dev. Watershed 2	
Hydrograph No. 9, SCS Runoff, Post Dev. Watershed 3	
TR-55 Tc Worksheet	17

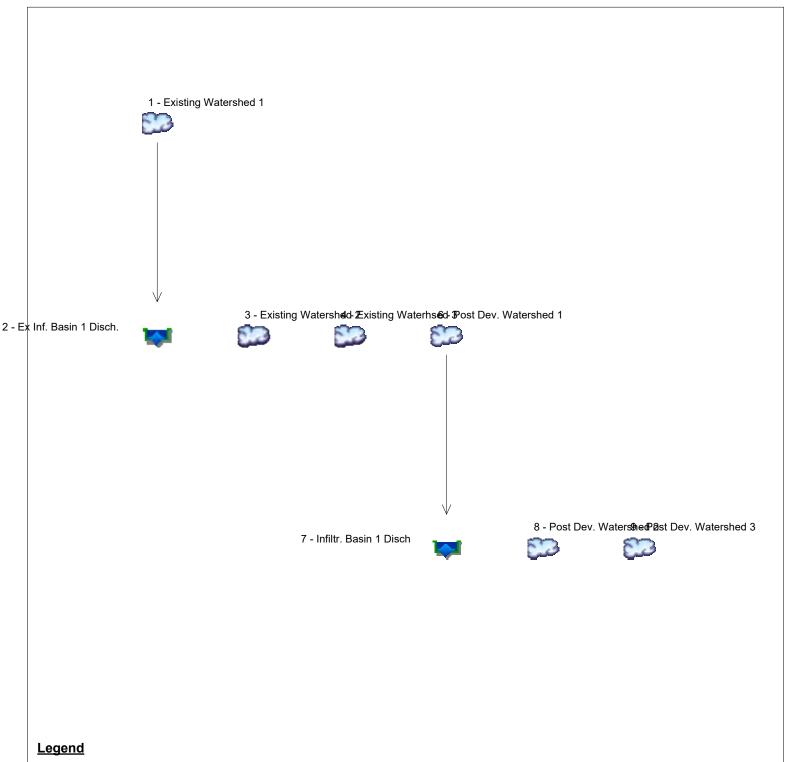
10 - Year

9	Summary Report	18
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Existing Watershed 1	
	Hydrograph No. 2, Reservoir, Ex Inf. Basin 1 Disch	
	Hydrograph No. 3, SCS Runoff, Existing Watershed 2	21
	Hydrograph No. 4, SCS Runoff, Existing Waterhsed 3	22
	Hydrograph No. 6, SCS Runoff, Post Dev. Watershed 1	23
	Hydrograph No. 7, Reservoir, Infiltr. Basin 1 Disch	24
	Hydrograph No. 8, SCS Runoff, Post Dev. Watershed 2	25
	Hydrograph No. 9, SCS Runoff, Post Dev. Watershed 3	26

25 - Year

Summary Report	27
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing Watershed 1	
Hydrograph No. 2, Reservoir, Ex Inf. Basin 1 Disch	29
Hydrograph No. 3, SCS Runoff, Existing Watershed 2	30
Hydrograph No. 4, SCS Runoff, Existing Waterhsed 3	
Hydrograph No. 6, SCS Runoff, Post Dev. Watershed 1	32
Hydrograph No. 7, Reservoir, Infiltr. Basin 1 Disch	33
Hydrograph No. 8, SCS Runoff, Post Dev. Watershed 2	34
Hydrograph No. 9, SCS Runoff, Post Dev. Watershed 3	35

50 - Year


Summary Report

Hydrograph Reports	37
Hydrograph No. 1, SCS Runoff, Existing Watershed 1	37
Hydrograph No. 2, Reservoir, Ex Inf. Basin 1 Disch	
Hydrograph No. 3, SCS Runoff, Existing Watershed 2	39
Hydrograph No. 4, SCS Runoff, Existing Waterhsed 3	40
Hydrograph No. 6, SCS Runoff, Post Dev. Watershed 1	41
Hydrograph No. 7, Reservoir, Infiltr. Basin 1 Disch	
Hydrograph No. 8, SCS Runoff, Post Dev. Watershed 2	43
Hydrograph No. 9, SCS Runoff, Post Dev. Watershed 3	44
100 - Year Summary Report	45
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing Watershed 1	46
Hydrograph No. 2, Reservoir, Ex Inf. Basin 1 Disch	
Hydrograph No. 3, SCS Runoff, Existing Watershed 2	48
Hydrograph No. 4, SCS Runoff, Existing Waterhsed 3	49
Hydrograph No. 6, SCS Runoff, Post Dev. Watershed 1	50
Hydrograph No. 7, Reservoir, Infiltr. Basin 1 Disch	

Watershed Model Schematic Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

1

Hyd. Origin **Description** 1 SCS Runoff Existing Watershed 1 2 Reservoir Ex Inf. Basin 1 Disch. 3 SCS Runoff Existing Watershed 2 4 SCS Runoff Existing Waterhsed 3 6 SCS Runoff Post Dev. Watershed 1 7 Reservoir Infiltr. Basin 1 Disch 8 SCS Runoff Post Dev. Watershed 2

9 SCS Runoff Post Dev. Watershed 3

Project: 7283 TR55 R1.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph	Inflow				Peak Ou	tflow (cfs))			Hydrograph
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.051			1.114	2.591	4.009	5.761	Existing Watershed 1
2	Reservoir	1		0.000			0.000	0.000	0.000	0.000	Ex Inf. Basin 1 Disch.
3	SCS Runoff			0.000			0.006	0.026	0.058	0.199	Existing Watershed 2
4	SCS Runoff			0.000			0.009	0.047	0.104	0.341	Existing Waterhsed 3
6	SCS Runoff			0.628			4.752	8.872	12.36	16.45	Post Dev. Watershed 1
7	Reservoir	6		0.000			0.000	0.000	0.000	0.000	Infiltr. Basin 1 Disch
8	SCS Runoff			0.000			0.014	0.089	0.182	0.370	Post Dev. Watershed 2
9	SCS Runoff			0.001			0.020	0.089	0.173	0.302	Post Dev. Watershed 3

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.051	1	887	1,374				Existing Watershed 1
2	Reservoir	0.000	1	847	0	1	268.19	163	Ex Inf. Basin 1 Disch.
3	SCS Runoff	0.000	1	n/a	0				Existing Watershed 2
4	SCS Runoff	0.000	1	n/a	0				Existing Waterhsed 3
6	SCS Runoff	0.628	1	749	6,909				Post Dev. Watershed 1
7	Reservoir	0.000	1	797	0	6	269.00	1,521	Infiltr. Basin 1 Disch
8	SCS Runoff	0.000	1	n/a	0				Post Dev. Watershed 2
728	3 TR55 R1.g				Return	Period: 2 Ye		Thursday	09 / 7 / 2023

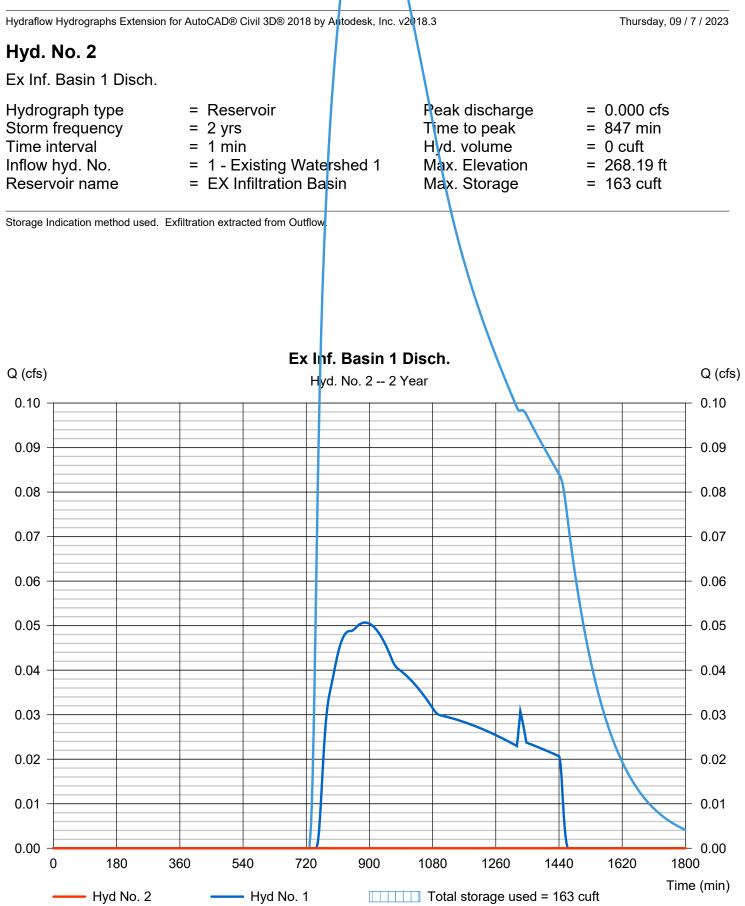
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

Existing Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.051 cfs
Storm frequency	= 2 yrs	Time to peak	= 887 min
Time interval	= 1 min	Hyd. volume	= 1,374 cuft
Drainage area	= 4.400 ac	Curve number	= 46*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 3.39 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.690 x 98) + (2.470 x 39) + (1.240 x 30)] / 4.400



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

Existing Watershed 1

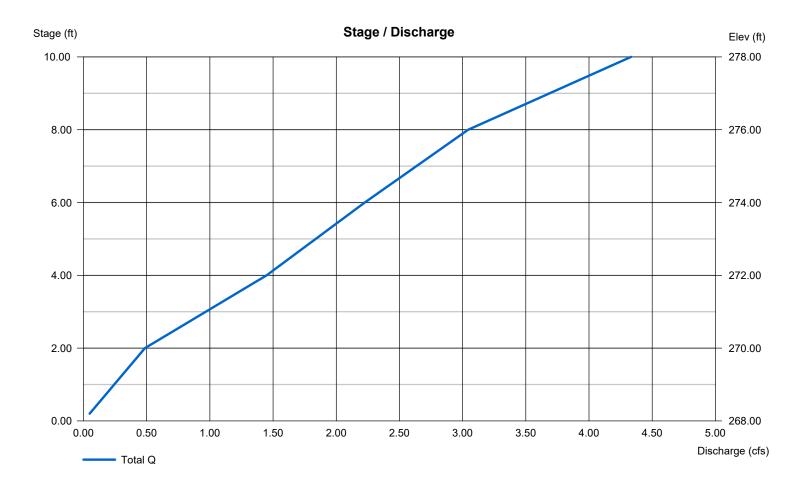
Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 160.0 = 3.39 = 3.70		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 15.79	+	0.00	+	0.00	=	15.79
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 70.00 = 14.30 = Unpaved =6.10	b	105.00 2.80 Unpave 2.70	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.19	+	0.65	+	0.00	=	0.84
Channel Flow X sectional flow area (sqft)	= 0.00		0.00		0.00		
Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.015 0.00		
Channel slope (%) Manning's n-value	= 0.00 = 0.015		0.00 0.00 0.015		0.00 0.00 0.015		
Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.015 =0.00	+	0.00 0.00 0.015 0.00	+	0.00 0.00 0.015 0.00	=	0.00

Pond Report

Pond No. 1 - EX Infiltration Basin

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 268.00 ft

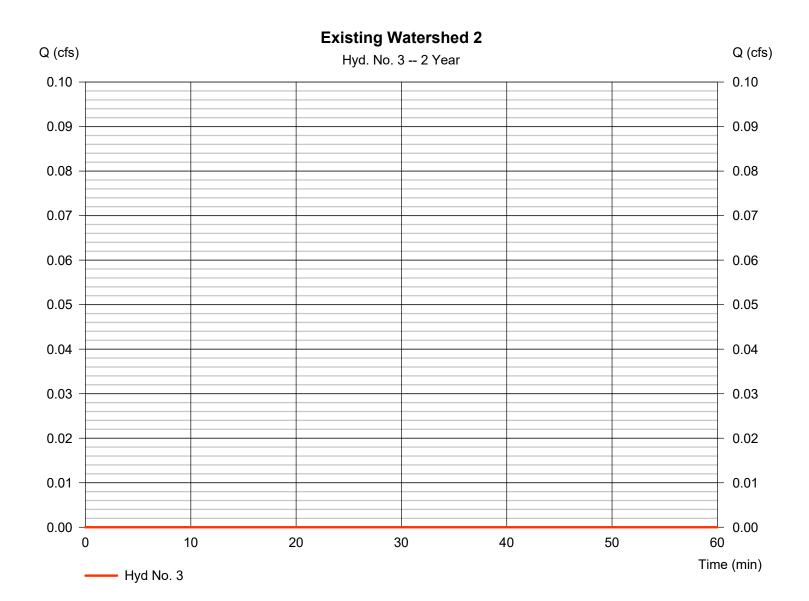

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	268.00	14	0	0
2.00	270.00	2,401	1,732	1,732
4.00	272.00	7,155	9,133	10,865
6.00	274.00	10,988	18,005	28,870
8.00	276.00	15,028	25,908	54,778
10.00	278.00	21,389	36,227	91,005

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 8.750 (by	/ Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Weir Structures

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 3

Existing Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Drainage area	= 2.020 ac	Curve number	= 30
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.39 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

8


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 4

Existing Waterhsed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Drainage area	= 2.900 ac	Curve number	= 31*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.10 min
Total precip.	= 3.39 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.210 x 39) + (2.690 x 30)] / 2.900

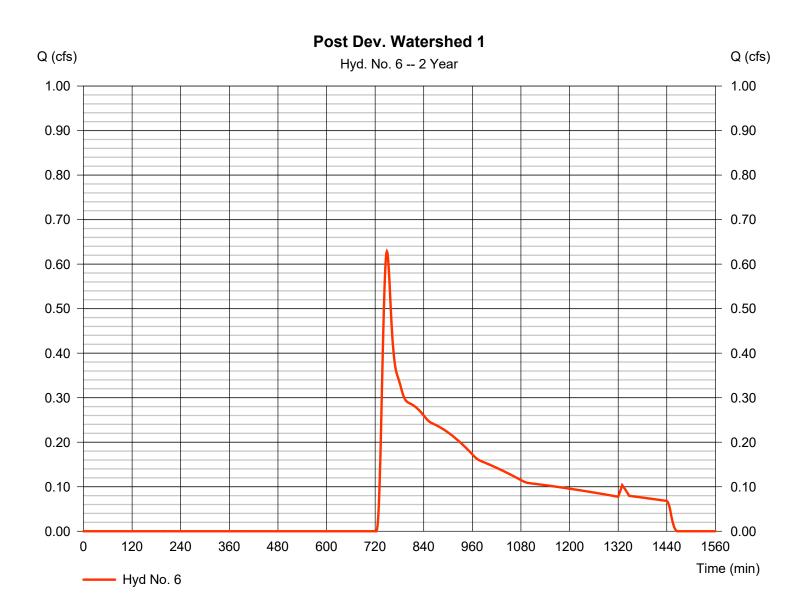
9

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 4

Existing Waterhsed 3

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 150.0 = 3.39 = 2.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 17.54	+	0.00	+	0.00	=	17.54
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 360.00 = 5.80 = Unpaved =3.89	b	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.54	+	0.00	+	0.00	=	1.54
Travel Time (min) Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.54 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	1.54
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.00 = 0.015	+	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.015	=	1.54
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	1.54 0.00


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 6

Post Dev. Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.628 cfs
Storm frequency	= 2 yrs	Time to peak	= 749 min
Time interval	= 1 min	Hyd. volume	= 6,909 cuft
Drainage area	= 8.500 ac	Curve number	= 52*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 3.39 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		-	

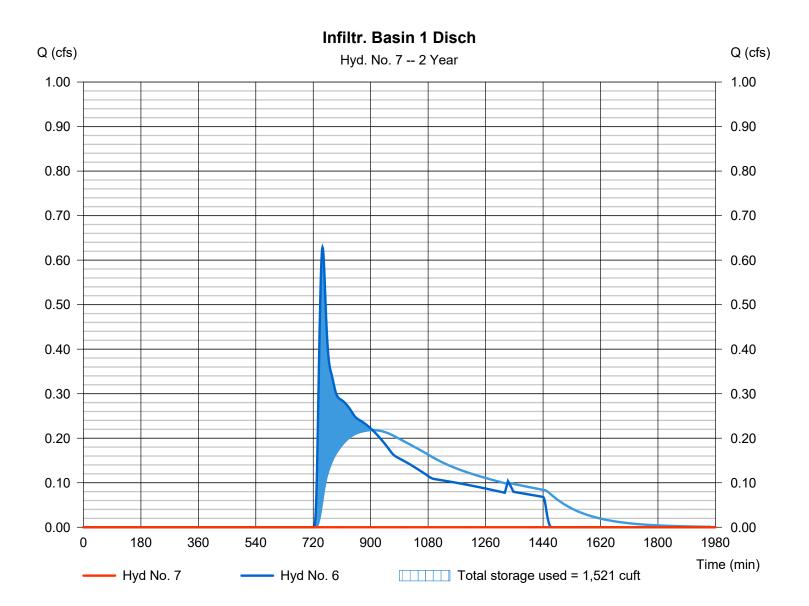
* Composite (Area/CN) = [(1.950 x 98) + (6.150 x 39) + (0.400 x 30)] / 8.500

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 6

Post Dev. Watershed 1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 160.0 = 3.39 = 3.70		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 15.79	+	0.00	+	0.00	=	15.79
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 70.00 = 14.30 = Unpaved =6.10	ł	105.00 2.80 Unpave 2.70	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.19	+	0.65	+	0.00	=	0.84
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 7

Infiltr. Basin 1 Disch

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 797 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - Post Dev. Watershed 1	Max. Elevation	= 269.00 ft
Reservoir name	= PR Infiltration Basin 1	Max. Storage	= 1,521 cuft

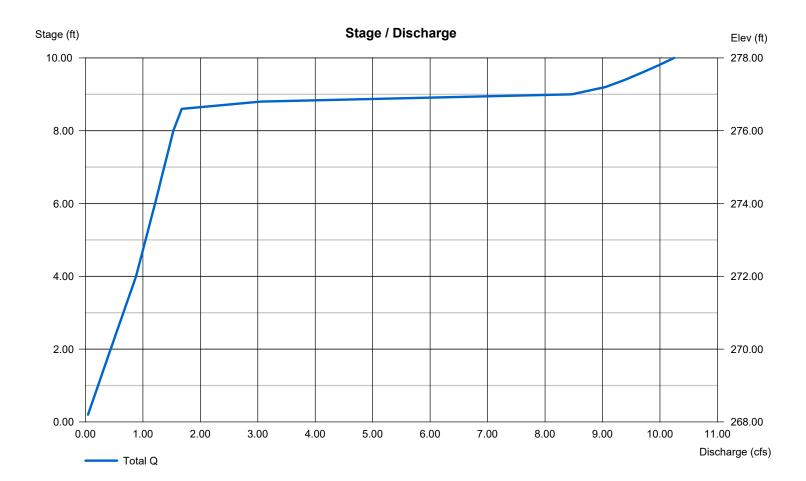
Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

Pond No. 2 - PR Infiltration Basin 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 268.00 ft


Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	268.00	14	0	0
2.00	270.00	4,320	3,053	3,053
4.00	272.00	8,683	12,750	15,803
6.00	274.00	11,945	20,539	36,343
8.00	276.00	15,085	26,966	63,309
10.00	278.00	19,850	34,823	98,132

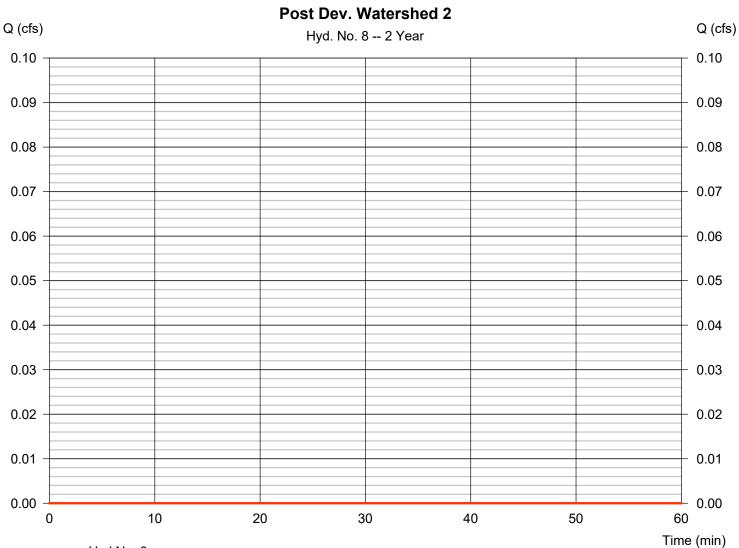
Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	0.00	0.00	0.00	Crest Len (ft)	= 12.60	0.00	0.00	0.00
Span (in)	= 15.00	0.00	0.00	0.00	Crest El. (ft)	= 276.70	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 274.40	0.00	0.00	0.00	Weir Type	= 1			
Length (ft)	= 155.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.80	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 4.380 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

14

Weir Structures


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

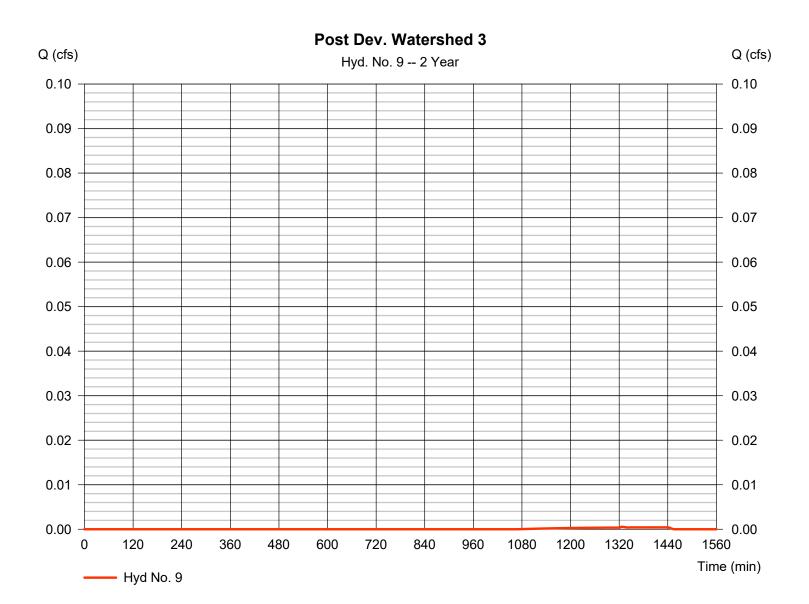
Hyd. No. 8

Post Dev. Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Drainage area	= 0.640 ac	Curve number	= 37*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.39 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 30) + (0.510 x 39)] / 0.640

– Hyd No. 8


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 9

Post Dev. Watershed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.001 cfs
Storm frequency	= 2 yrs	Time to peak	= 1327 min
Time interval	= 1 min	Hyd. volume	= 7 cuft
Drainage area	= 0.430 ac	Curve number	= 39*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.50 min
Total precip.	= 3.39 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		-	

* Composite (Area/CN) = [(0.430 x 39)] / 0.430

16

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

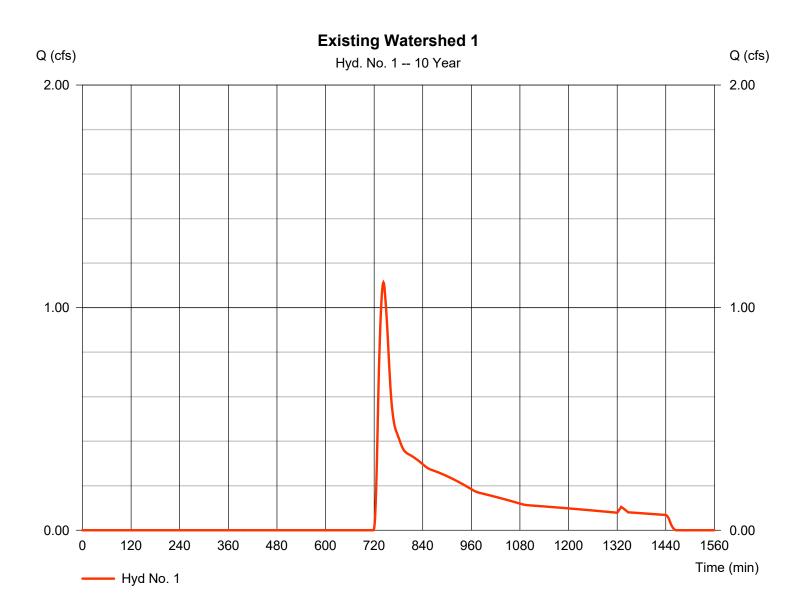
Hyd. No. 9

Post Dev. Watershed 3

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 60.0 = 3.39 = 1.70		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 9.83	+	0.00	+	0.00	=	9.83
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 160.00 = 6.30 = Unpaved =4.05	b	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.66	+	0.00	+	0.00	=	0.66
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.114	1	743	8,452				Existing Watershed 1
2	Reservoir	0.000	1	775	0	1	269.71	1,480	Ex Inf. Basin 1 Disch.
3	SCS Runoff	0.006	1	1324	60				Existing Watershed 2
4	SCS Runoff	0.009	1	1332	193				Existing Waterhsed 3
6	SCS Runoff	4.752	1	737	26,493				Post Dev. Watershed 1
7	Reservoir	0.000	1	738	0	6	271.07	9,895	Infiltr. Basin 1 Disch
8	SCS Runoff	0.014	1	825	367				Post Dev. Watershed 2
9	SCS Runoff	0.020	1	750	351				Post Dev. Watershed 3
728	3 TR55 R1.g	lbw			Return F	ר Period: 10 י	/ear	Thursday,	09 / 7 / 2023


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

Existing Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 1.114 cfs
Storm frequency	= 10 yrs	Time to peak	= 743 min
Time interval	= 1 min	Hyd. volume	= 8,452 cuft
Drainage area	= 4.400 ac	Curve number	= 46*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 5.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.690 x 98) + (2.470 x 39) + (1.240 x 30)] / 4.400

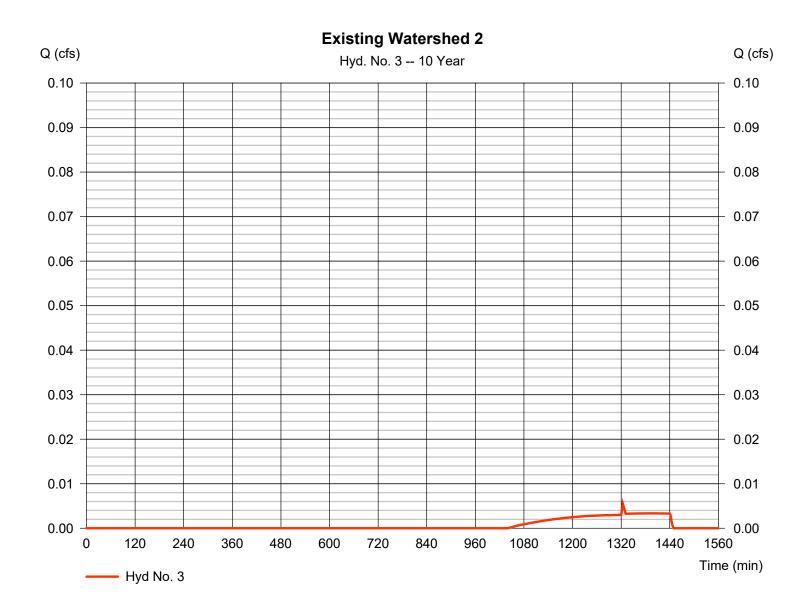

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 2

Ex Inf. Basin 1 Disch.

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= 775 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 1 - Existing Watershed 1	Max. Elevation	= 269.71 ft
Reservoir name	= EX Infiltration Basin	Max. Storage	= 1,480 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

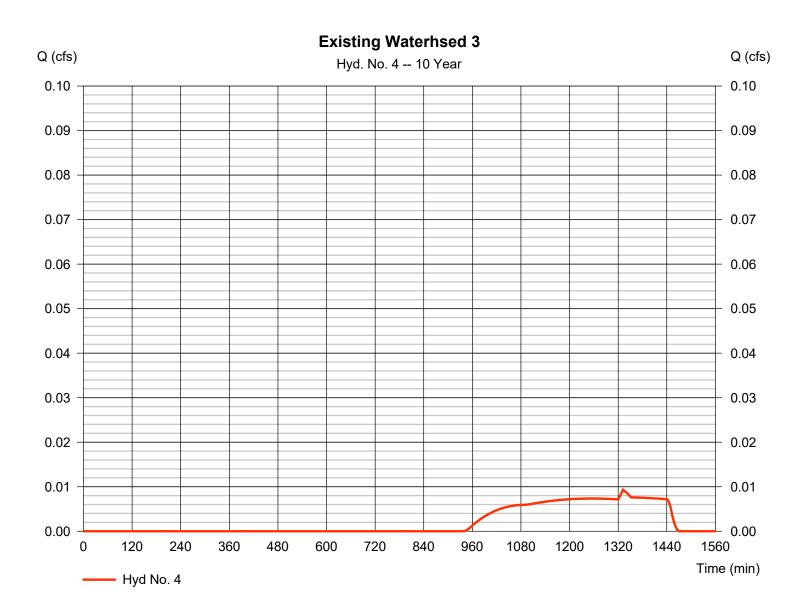

20

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 3

Existing Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.006 cfs
Storm frequency	= 10 yrs	Time to peak	= 1324 min
Time interval	= 1 min	Hyd. volume	= 60 cuft
Drainage area	= 2.020 ac	Curve number	= 30
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

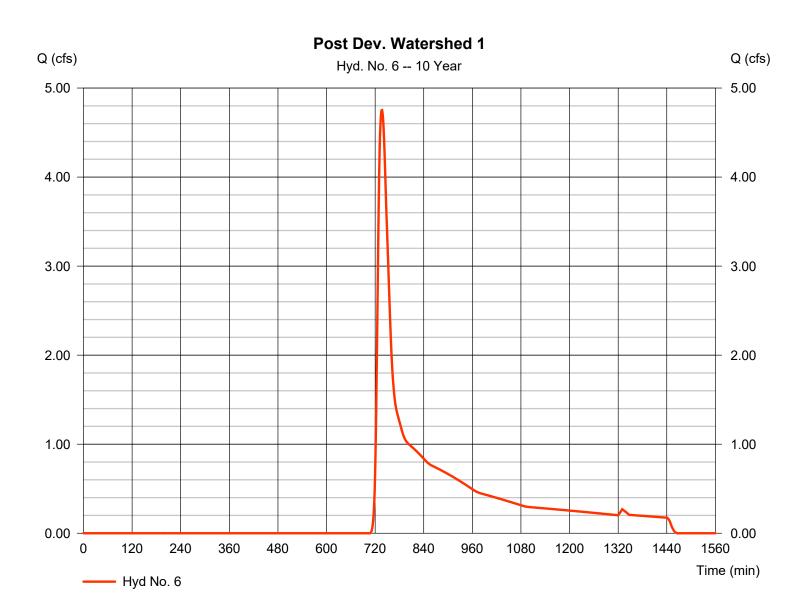
Hyd. No. 4

Existing Waterhsed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.009 cfs
Storm frequency	= 10 yrs	Time to peak	= 1332 min
Time interval	= 1 min	Hyd. volume	= 193 cuft
Drainage area	= 2.900 ac	Curve number	= 31*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.10 min
Total precip.	= 5.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.210 x 39) + (2.690 x 30)] / 2.900

22


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

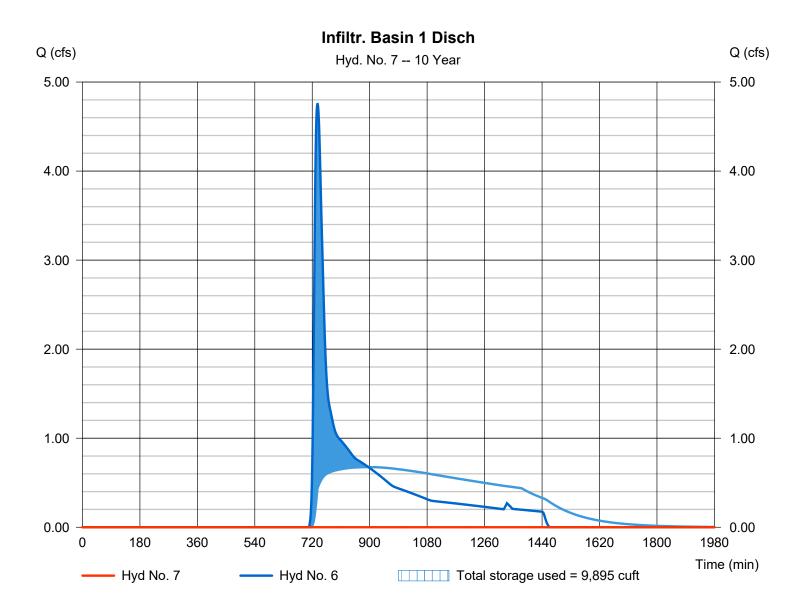
Hyd. No. 6

Post Dev. Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 4.752 cfs
Storm frequency	= 10 yrs	Time to peak	= 737 min
Time interval	= 1 min	Hyd. volume	= 26,493 cuft
Drainage area	= 8.500 ac	Curve number	= 52*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 5.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.950 x 98) + (6.150 x 39) + (0.400 x 30)] / 8.500

23

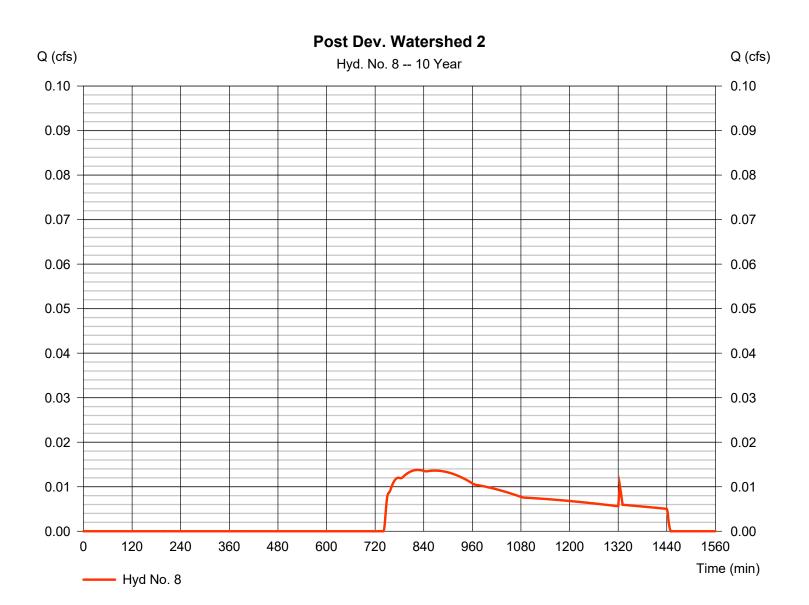

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 7

Infiltr. Basin 1 Disch

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - Post Dev. Watershed 1	Max. Elevation	= 271.07 ft
Reservoir name	= PR Infiltration Basin 1	Max. Storage	= 9,895 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

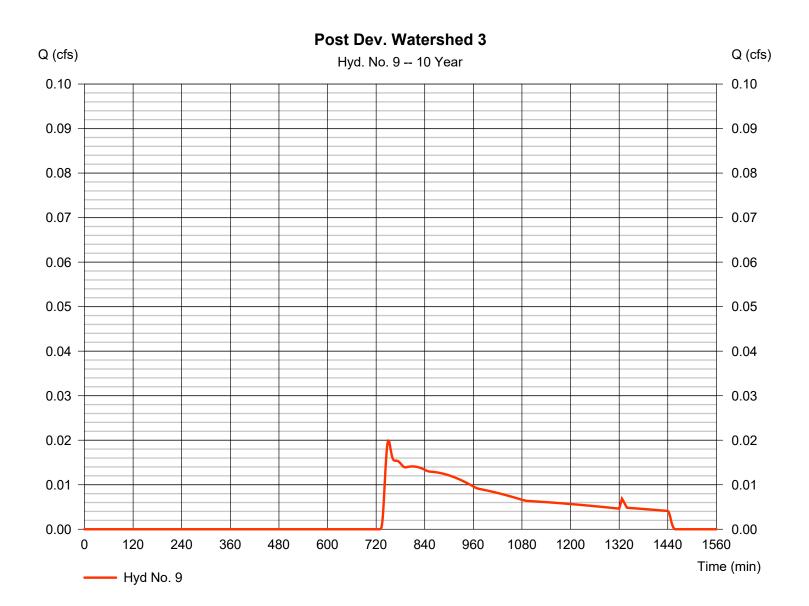

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 8

Post Dev. Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.014 cfs
Storm frequency	= 10 yrs	Time to peak	= 825 min
Time interval	= 1 min	Hyd. volume	= 367 cuft
Drainage area	= 0.640 ac	Curve number	= 37*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 30) + (0.510 x 39)] / 0.640


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 9

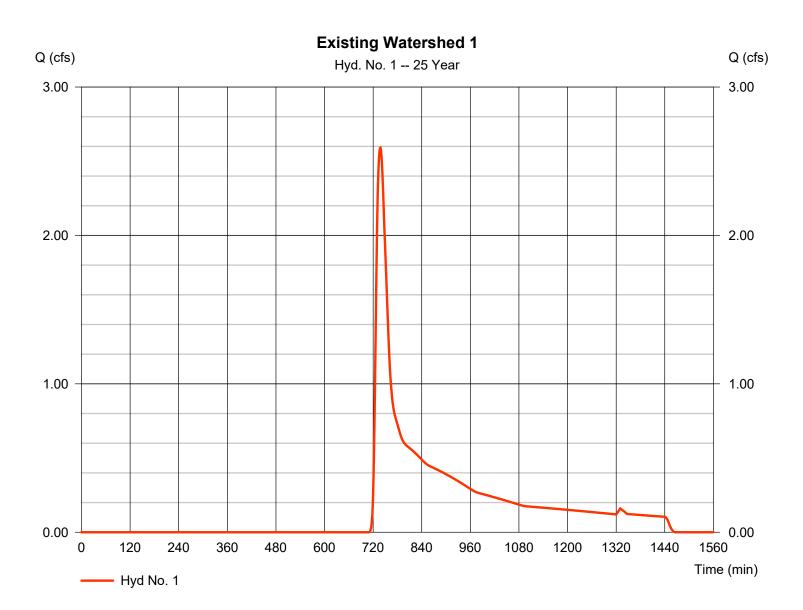
Post Dev. Watershed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.020 cfs
Storm frequency	= 10 yrs	Time to peak	= 750 min
Time interval	= 1 min	Hyd. volume	= 351 cuft
Drainage area	= 0.430 ac	Curve number	= 39*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.50 min
Total precip.	= 5.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.430 x 39)] / 0.430

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.591	1	738	15,182				Existing Watershed 1
2	Reservoir	0.000	1	740	0	1	270.43	3,704	Ex Inf. Basin 1 Disch.
3	SCS Runoff	0.026	1	1324	688				Existing Watershed 2
4	SCS Runoff	0.047	1	905	1,296				Existing Waterhsed 3
6	SCS Runoff	8.872	1	734	43,090				Post Dev. Watershed 1
7	Reservoir	0.000	1	790	0	6	272.33	19,160	Infiltr. Basin 1 Disch
8	SCS Runoff	0.089	1	742	925				Post Dev. Watershed 2
9	SCS Runoff	0.089	1	742	787				Post Dev. Watershed 3
728	33 TR55 R1.g	gpw			Return	Period: 25 \	<i>r</i> ear	Thursday,	09 / 7 / 2023


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

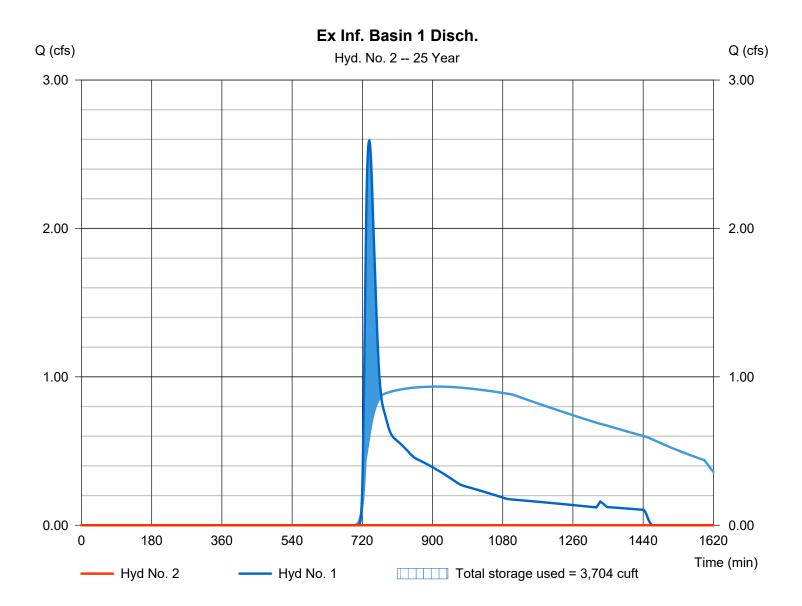
Hyd. No. 1

Existing Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 2.591 cfs
Storm frequency	= 25 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 15,182 cuft
Drainage area	= 4.400 ac	Curve number	= 46*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 6.17 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.690 x 98) + (2.470 x 39) + (1.240 x 30)] / 4.400

28


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 2

Ex Inf. Basin 1 Disch.

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 25 yrs	Time to peak	= 740 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 1 - Existing Watershed 1	Max. Elevation	= 270.43 ft
Reservoir name	= EX Infiltration Basin	Max. Storage	= 3,704 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



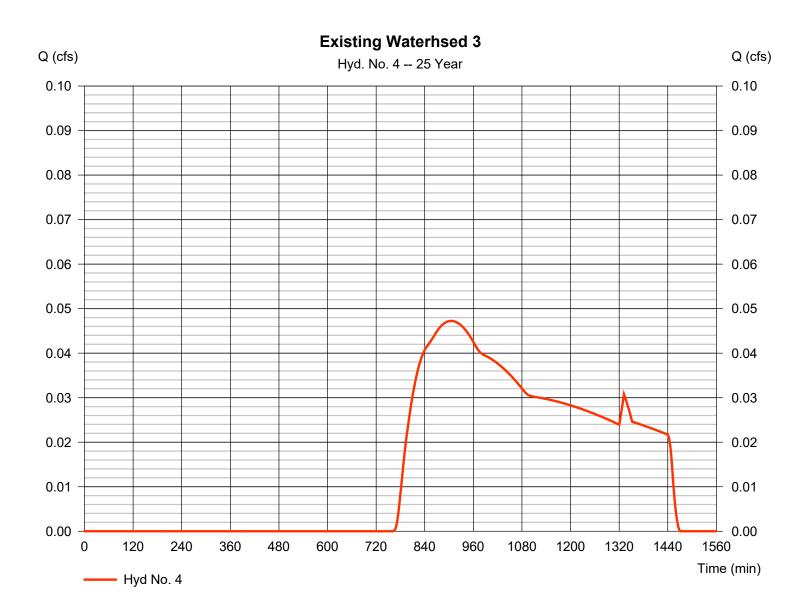
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 3

Existing Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.026 cfs
Storm frequency	= 25 yrs	Time to peak	= 1324 min
Time interval	= 1 min	Hyd. volume	= 688 cuft
Drainage area	= 2.020 ac	Curve number	= 30
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.17 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

30


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

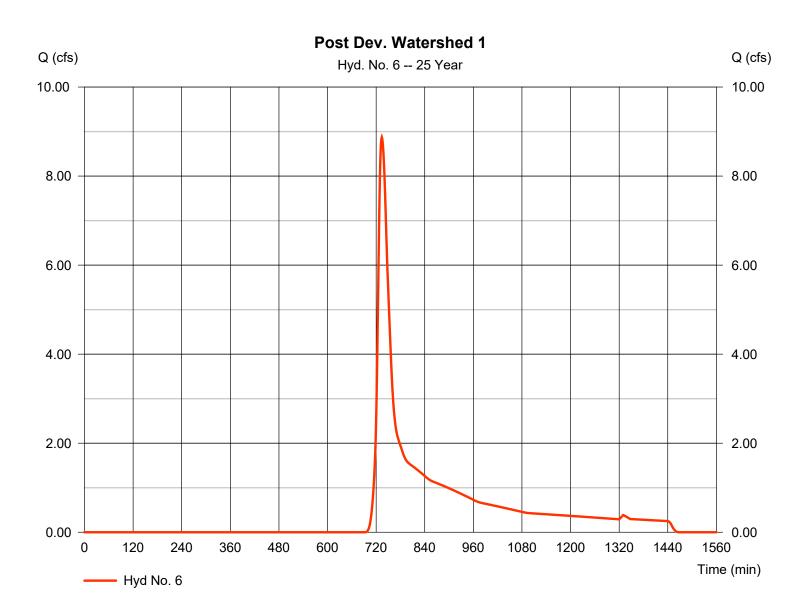
Hyd. No. 4

Existing Waterhsed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.047 cfs
Storm frequency	= 25 yrs	Time to peak	= 905 min
Time interval	= 1 min	Hyd. volume	= 1,296 cuft
Drainage area	= 2.900 ac	Curve number	= 31*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.10 min
Total precip.	= 6.17 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.210 x 39) + (2.690 x 30)] / 2.900

31


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

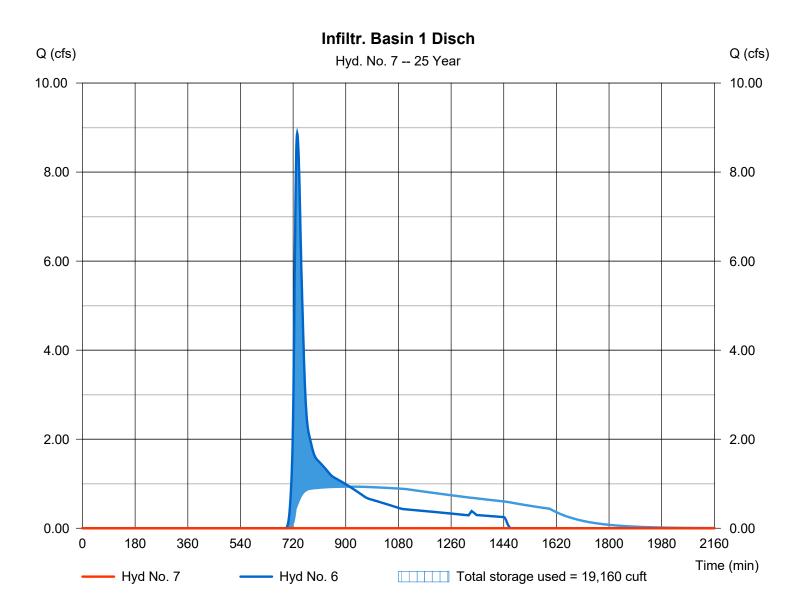
Hyd. No. 6

Post Dev. Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 8.872 cfs
Storm frequency	= 25 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 43,090 cuft
Drainage area	= 8.500 ac	Curve number	= 52*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 6.17 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.950 x 98) + (6.150 x 39) + (0.400 x 30)] / 8.500

32

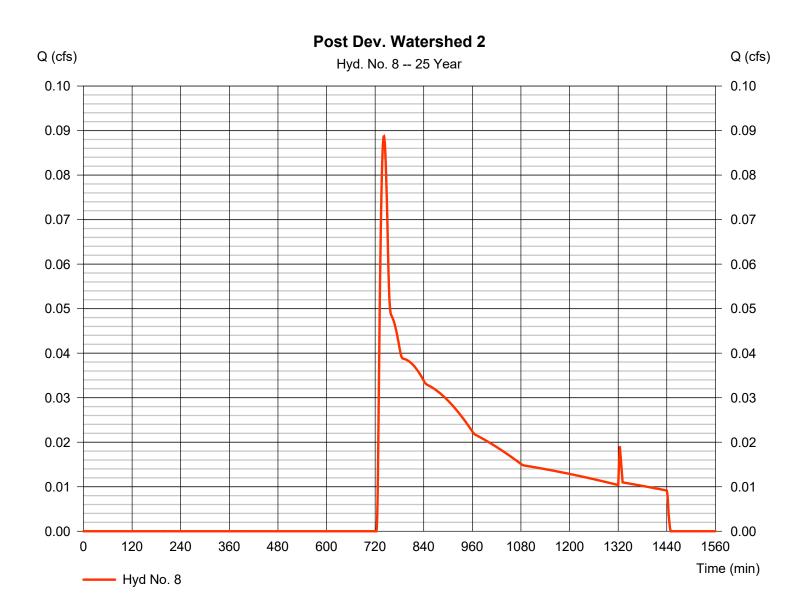

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 7

Infiltr. Basin 1 Disch

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 25 yrs	Time to peak	= 790 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - Post Dev. Watershed 1	Max. Elevation	= 272.33 ft
Reservoir name	= PR Infiltration Basin 1	Max. Storage	= 19,160 cuft

Storage Indication method used. Exfiltration extracted from Outflow.


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

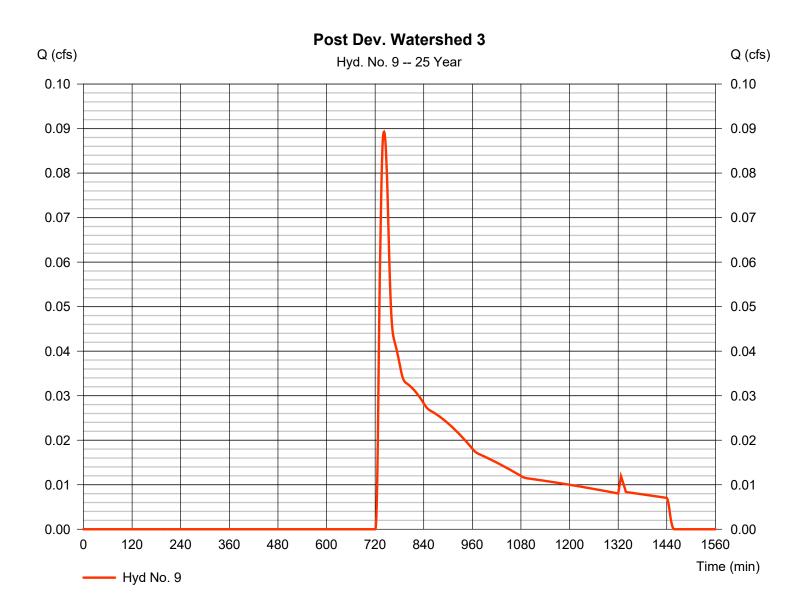
Hyd. No. 8

Post Dev. Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.089 cfs
Storm frequency	= 25 yrs	Time to peak	= 742 min
Time interval	= 1 min	Hyd. volume	= 925 cuft
Drainage area	= 0.640 ac	Curve number	= 37*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.17 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 30) + (0.510 x 39)] / 0.640

34


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 9

Post Dev. Watershed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.089 cfs
Storm frequency	= 25 yrs	Time to peak	= 742 min
Time interval	= 1 min	Hyd. volume	= 787 cuft
Drainage area	= 0.430 ac	Curve number	= 39*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.50 min
Total precip.	= 6.17 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.430 x 39)] / 0.430

35

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.009	1	735	21,038				Existing Watershed 1
2	Reservoir	0.000	1	732	0	1	270.93	5,962	Ex Inf. Basin 1 Disch.
3	SCS Runoff	0.058	1	827	1,552				Existing Watershed 2
4	SCS Runoff	0.104	1	825	2,674				Existing Waterhsed 3
6	SCS Runoff	12.36	1	733	56,954				Post Dev. Watershed 1
7	Reservoir	0.000	1	749	0	6	273.19	28,025	Infiltr. Basin 1 Disch
8	SCS Runoff	0.182	1	737	1,470				Post Dev. Watershed 2
9	SCS Runoff	0.173	1	736	1,198				Post Dev. Watershed 3
728	3 TR55 R1.g	jpw			Return	Period: 50 \	/ear	Thursday.	09 / 7 / 2023

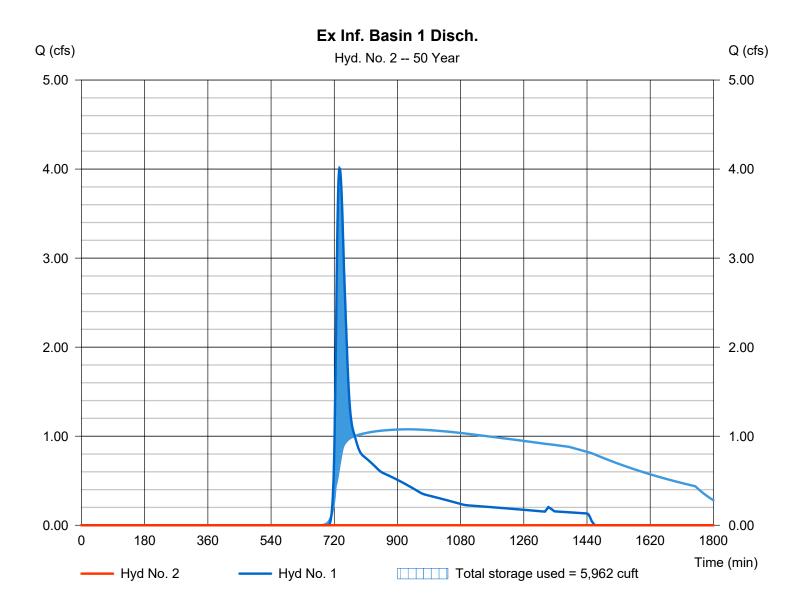
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

Existing Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 4.009 cfs
Storm frequency	= 50 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 21,038 cuft
Drainage area	= 4.400 ac	Curve number	= 46*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 6.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.690 x 98) + (2.470 x 39) + (1.240 x 30)] / 4.400

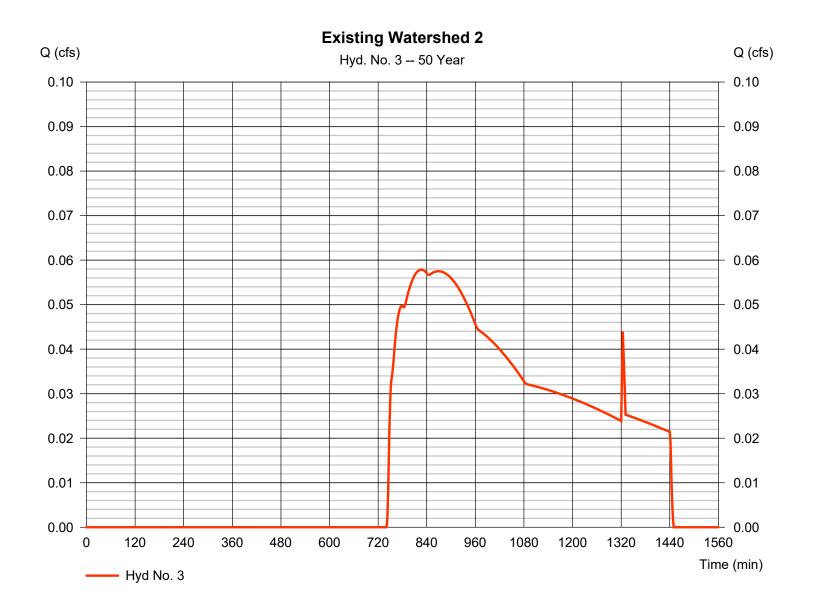

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 2

Ex Inf. Basin 1 Disch.

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 50 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 1 - Existing Watershed 1	Max. Elevation	= 270.93 ft
Reservoir name	= EX Infiltration Basin	Max. Storage	= 5,962 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

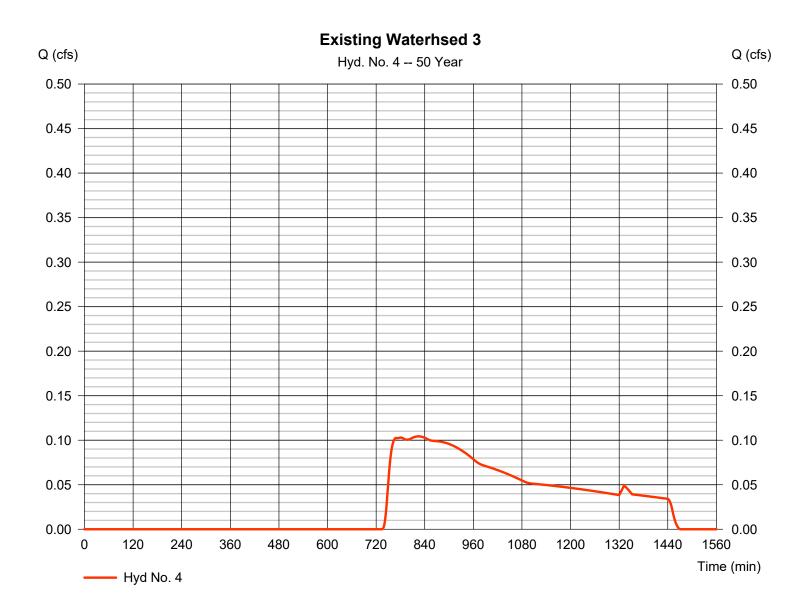

38

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 3

Existing Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.058 cfs
Storm frequency	= 50 yrs	Time to peak	= 827 min
Time interval	= 1 min	Hyd. volume	= 1,552 cuft
Drainage area	= 2.020 ac	Curve number	= 30
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

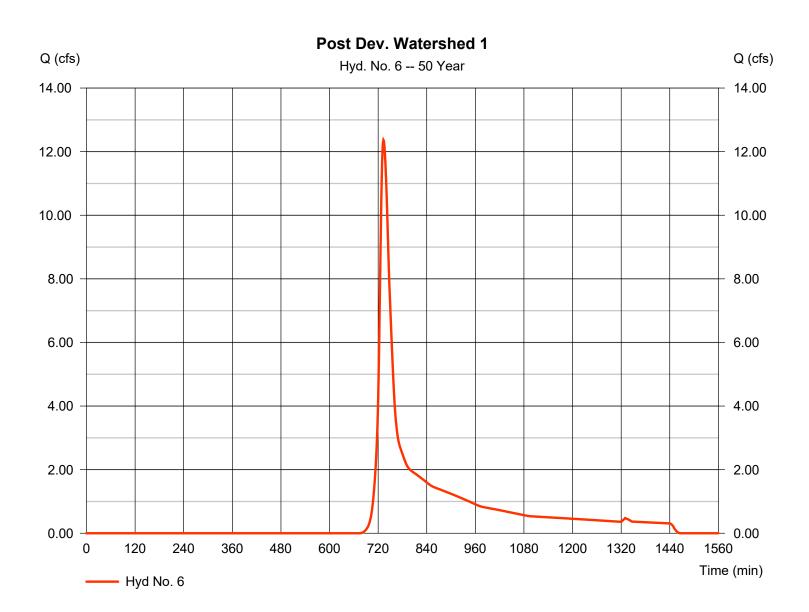
Hyd. No. 4

Existing Waterhsed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.104 cfs
Storm frequency	= 50 yrs	Time to peak	= 825 min
Time interval	= 1 min	Hyd. volume	= 2,674 cuft
Drainage area	= 2.900 ac	Curve number	= 31*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.10 min
Total precip.	= 6.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.210 x 39) + (2.690 x 30)] / 2.900

40

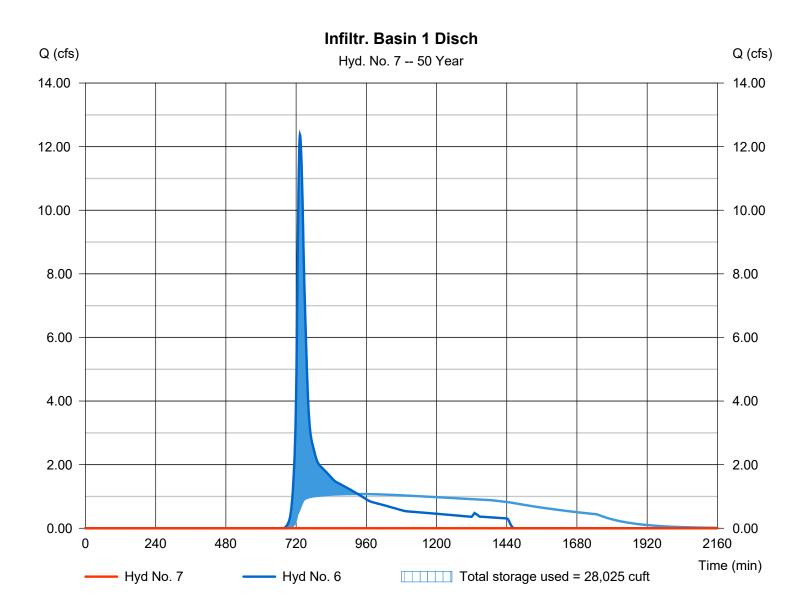

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 6

Post Dev. Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 12.36 cfs
Storm frequency	= 50 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 56,954 cuft
Drainage area	= 8.500 ac	Curve number	= 52*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 6.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.950 x 98) + (6.150 x 39) + (0.400 x 30)] / 8.500

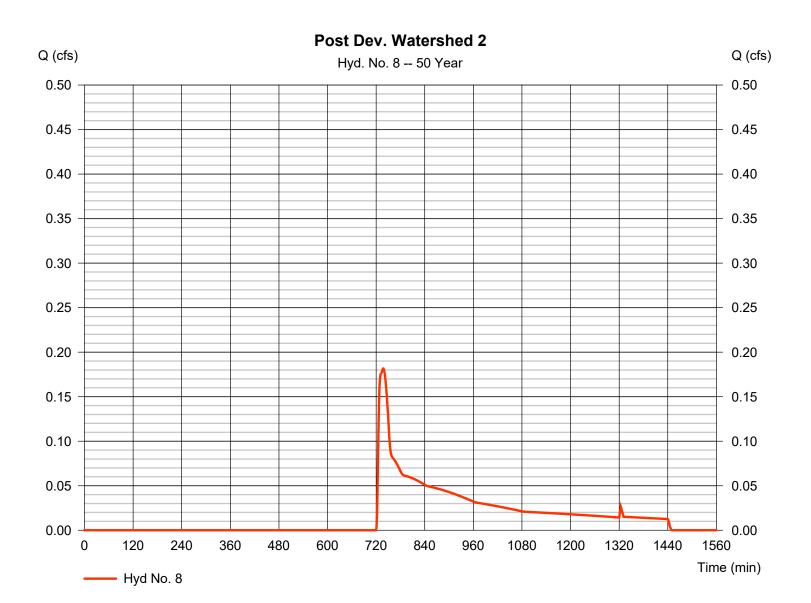

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 7

Infiltr. Basin 1 Disch

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 50 yrs	Time to peak	= 749 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - Post Dev. Watershed 1= PR Infiltration Basin 1	Max. Elevation	= 273.19 ft
Reservoir name		Max. Storage	= 28,025 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

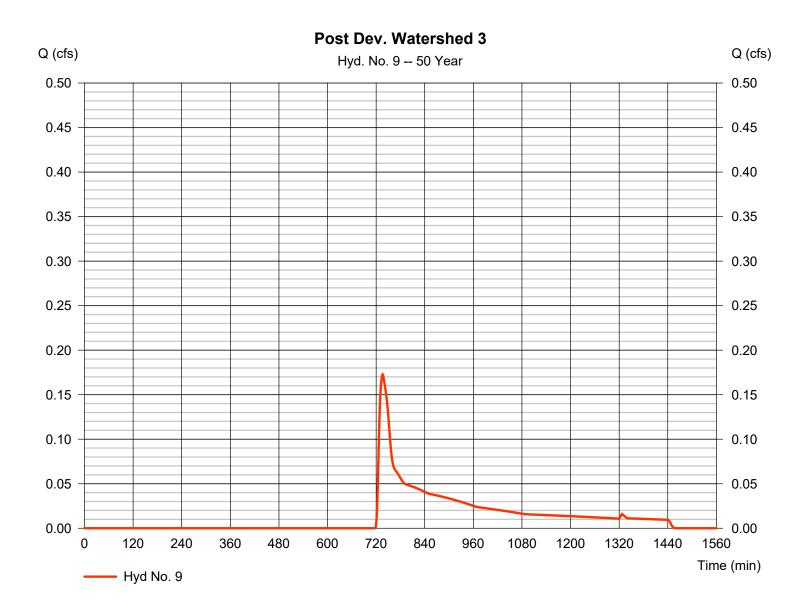

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 8

Post Dev. Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.182 cfs
Storm frequency	= 50 yrs	Time to peak	= 737 min
Time interval	= 1 min	Hyd. volume	= 1,470 cuft
Drainage area	= 0.640 ac	Curve number	= 37*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 30) + (0.510 x 39)] / 0.640


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 9

Post Dev. Watershed 3

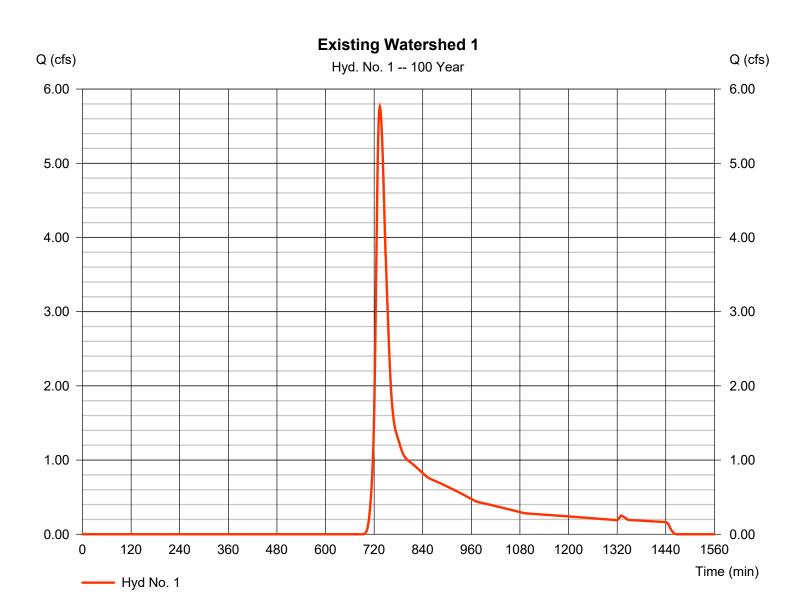
Hydrograph type	= SCS Runoff	Peak discharge	= 0.173 cfs
Storm frequency	= 50 yrs	Time to peak	= 736 min
Time interval	= 1 min	Hyd. volume	= 1,198 cuft
Drainage area	= 0.430 ac	Curve number	= 39*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.50 min
Total precip.	= 6.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.430 x 39)] / 0.430

44

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.761	1	734	28,049				Existing Watershed 1
2	Reservoir	0.000	1	728	0	1	271.55	8,794	Ex Inf. Basin 1 Disch.
3	SCS Runoff	0.199	1	745	2,822				Existing Watershed 2
4	SCS Runoff	0.341	1	754	4,634				Existing Waterhsed 3
6	SCS Runoff	16.45	1	733	73,128				Post Dev. Watershed 1
7	Reservoir	0.000	1	737	0	6	274.17	38,638	Infiltr. Basin 1 Disch
8	SCS Runoff	0.370	1	728	2,169				Post Dev. Watershed 2
728	3 TR55 R1.g	jpw			Return	Period: 100	Year	Thursday,	09 / 7 / 2023


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

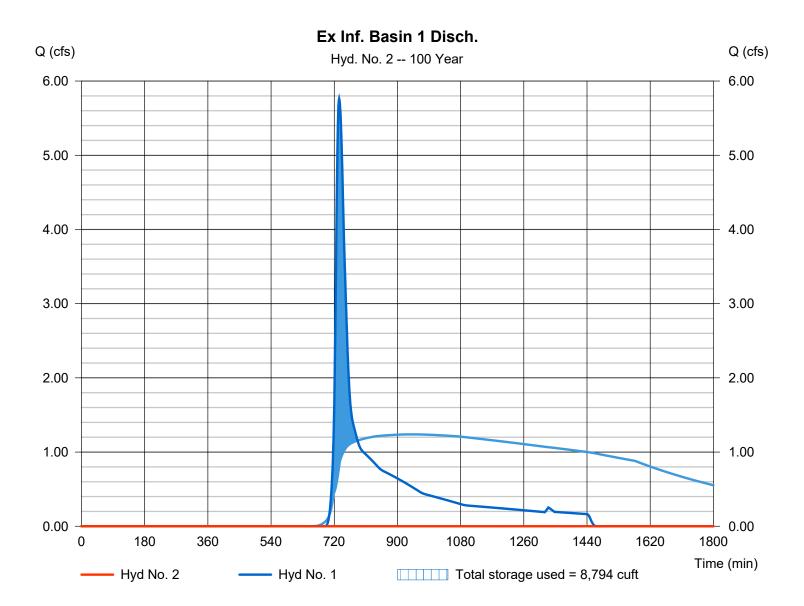
Hyd. No. 1

Existing Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 5.761 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 28,049 cuft
Drainage area	= 4.400 ac	Curve number	= 46*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 7.81 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.690 x 98) + (2.470 x 39) + (1.240 x 30)] / 4.400

46

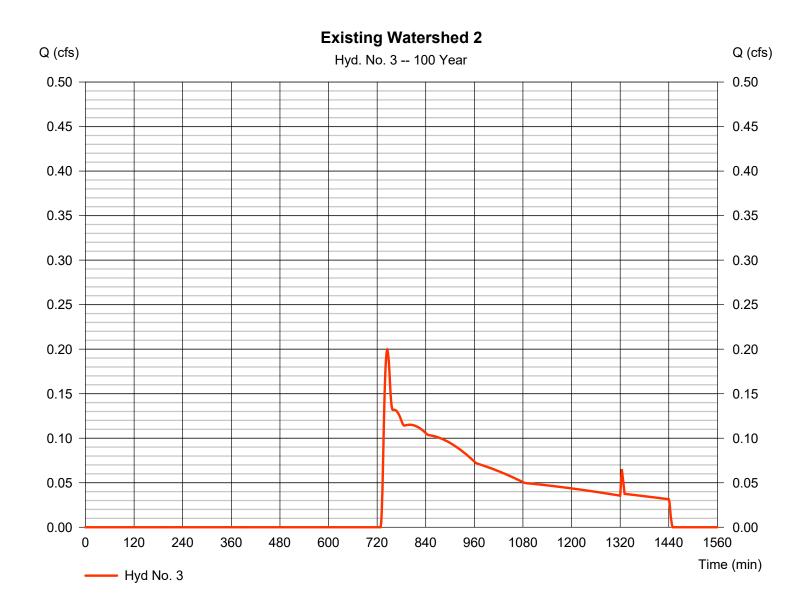

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 2

Ex Inf. Basin 1 Disch.

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 1 - Existing Watershed 1	Max. Elevation	= 271.55 ft
Reservoir name	= EX Infiltration Basin	Max. Storage	= 8,794 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 3

Existing Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.199 cfs
Storm frequency	= 100 yrs	Time to peak	= 745 min
Time interval	= 1 min	Hyd. volume	= 2,822 cuft
Drainage area	= 2.020 ac	Curve number	= 30
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.81 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

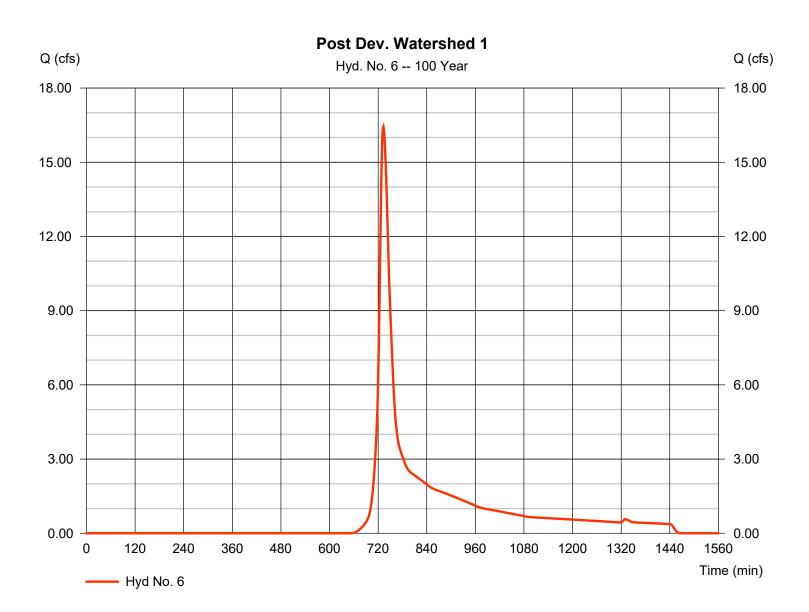
Hyd. No. 4

Existing Waterhsed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.341 cfs
Storm frequency	= 100 yrs	Time to peak	= 754 min
Time interval	= 1 min	Hyd. volume	= 4,634 cuft
Drainage area	= 2.900 ac	Curve number	= 31*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.10 min
Total precip.	= 7.81 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.210 x 39) + (2.690 x 30)] / 2.900

49


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

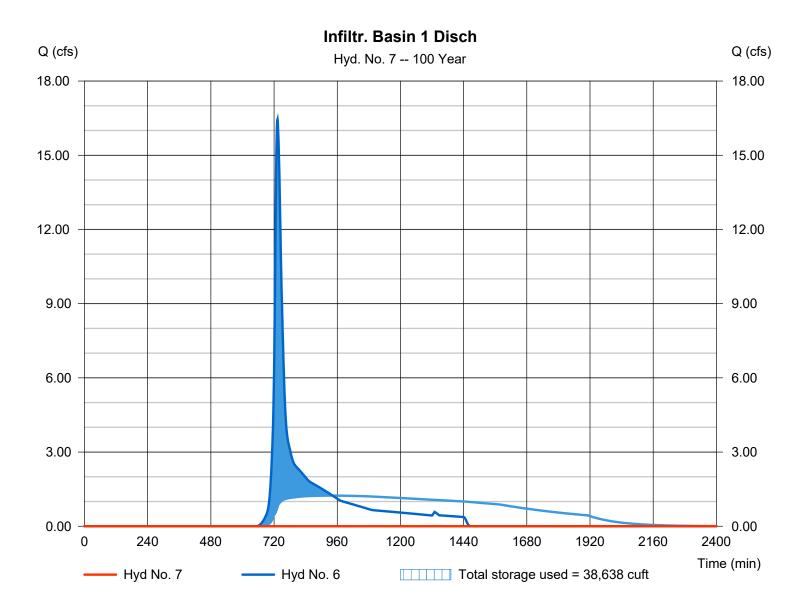
Hyd. No. 6

Post Dev. Watershed 1

Hydrograph type	= SCS Runoff	Peak discharge	= 16.45 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 73,128 cuft
Drainage area	= 8.500 ac	Curve number	= 52*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.60 min
Total precip.	= 7.81 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.950 x 98) + (6.150 x 39) + (0.400 x 30)] / 8.500

50


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

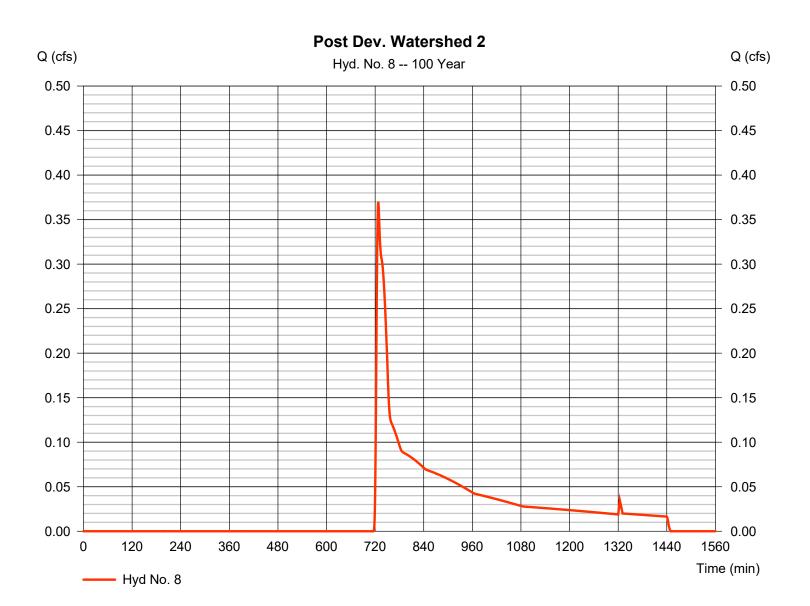
Hyd. No. 7

Infiltr. Basin 1 Disch

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= 737 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - Post Dev. Watershed 1	Max. Elevation	= 274.17 ft
Reservoir name	= PR Infiltration Basin 1	Max. Storage	= 38,638 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

51


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 8

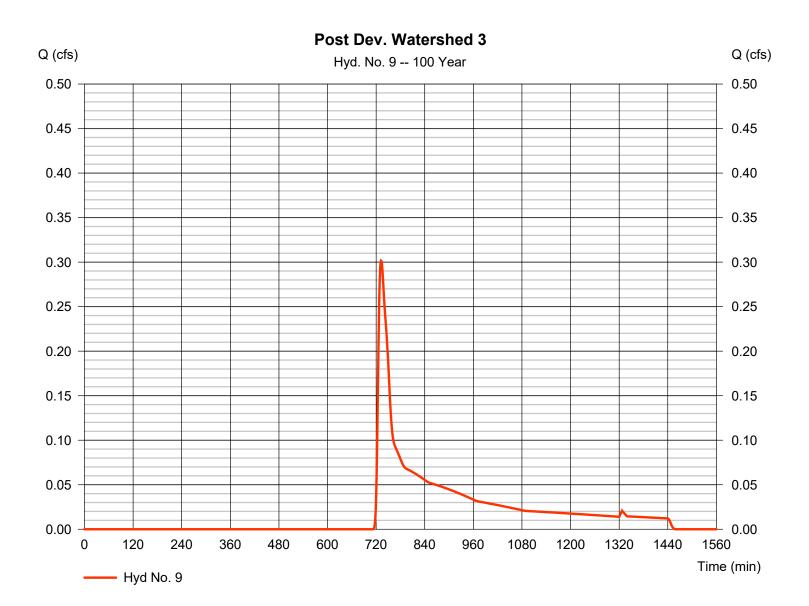
Post Dev. Watershed 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.370 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 2,169 cuft
Drainage area	= 0.640 ac	Curve number	= 37*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.81 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 30) + (0.510 x 39)] / 0.640

Thursday, 09 / 7 / 2023

52


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 9

Post Dev. Watershed 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.302 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 1,714 cuft
Drainage area	= 0.430 ac	Curve number	= 39*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.50 min
Total precip.	= 7.81 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.430 x 39)] / 0.430

53

APPENDIX A

Calculation Support Information

Stormwater Management Report North Woods Village, Planned Residential Development 25 Colonial Drive, Killingly, Connecticut

CLA Engineers, Inc.

Civil • Structural • Survey

NOAA Atlas 14, Volume 10, Version 3 Location name: Dayville, Connecticut, USA* Latitude: 41.844°, Longitude: -71.8937° Elevation: 279 ft** *source: ESRI Maps *source: USGS

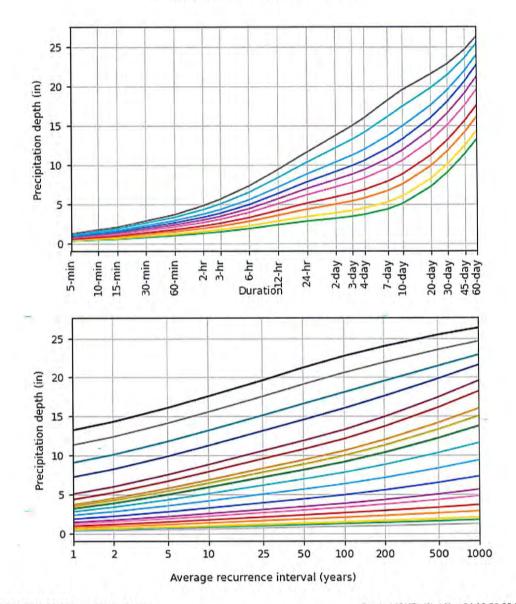
POINT PRECIPITATION FREQUENCY ESTIMATES

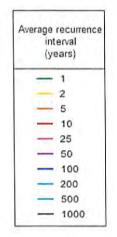
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular


1.2.1.1.1				Average	recurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.334 (0.258-0.428)	0.397 (0.306-0.510)	0.500 (0.385-0.644)	0.585 (0.447-0.758)	0.703 (0.521-0.947)	0.793 (0.576-1.09)	0.885 (0.624-1.25)	0.985 (0.663-1.43)	1.12 (0.727-1.68)	1.23 (0.781-1.89)
10-min	0.473 (0.365-0.607)	0.562 (0.434-0.722)	0.708 (0.545-0.913)	0.829 (0.635-1.08)	0.996 (0.739-1.34)	1.12 (0.816-1.54)	1.25 (0.884-1.78)	1.40 (0.938-2.02)	1.59 (1.03-2.39)	1.75 (1.11-2.67)
15-min	0.556	0.661 (0.511-0.849)	0.833 (0.641-1.07)	0.976 (0.747-1.26)	1.17 (0.869-1.58)	1.32 (0.959-1.81)	1.48 (1.04-2.09)	1.64 (1.10-2.38)	1.87 (1.21-2.81)	2.06 (1.30-3.14)
30-min	0.775	0.921 (0.711-1.18)	1.16 (0.892-1.49)	1.36 (1.04-1.76)	1.63 (1.21-2.20)	1.84 (1.33-2.52)	2.05 (1.45-2.90)	2.28 (1.53-3.31)	2.60 (1.69-3.90)	2.86 (1.81-4.36)
60-min	0.993	1.18 (0.911-1.52)	1.49 (1.14-1.92)	1.74 (1.33-2.25)	2.09 (1.55-2.81)	2.35 (1.71-3.23)	2.63 (1.85-3.72)	2.92 (1.96-4.24)	3.33 (2.16-4.99)	3.66 (2.31-5.59)
2-hr	1.27 (0.987-1.62)	1.51 (1.17-1.92)	1.89 (1.46-2.42)	2.21 (1.70-2.85)	2.65 (1.98-3.56)	2.98 (2.18-4.08)	3.33 (2.37-4.72)	3.73 (2.52-5.38)	4.32 (2.80-6.43)	4.80 (3.05-7.30)
3-hr	1.46 (1.14-1.86)	1.74 (1.35-2.21)	2.18 (1.69-2.79)	2,55 (1.97-3.27)	3.06 (2.29-4.09)	3.43 (2.52-4.70)	3.84 (2.75-5.44)	4.31 (2.91-6.20)	5.02 (3.27-7.46)	5.62 (3.58-8.50)
6-hr	1.87 (1.47-2.37)	2.22 (1.74-2.82)	2.80 (2.18-3.55)	3.27 (2.54-4.18)	3.92 (2.96-5.23)	4.41 (3.26-6.01)	4.93 (3.56-6,98)	5.56 (3.77-7.95)	6.51 (4.25-9.60)	7.32 (4.67-11.0)
12-hr	2,36 (1.86-2.98)	2.82 (2.22-3.55)	3.56 (2.79-4.50)	4.18 (3.26-5.31)	5.03 (3.81-6.67)	5.66 (4.20-7.66)	6.34 (4.59-8.91)	7.15 (4.86-10.2)	8.36 (5.47-12.3)	9.38 (6.00-14.0)
24-hr	2.82 (2.23-3.53)	3.39 (2.68-4.25)	4.32 (3.41-5.43)	5.10 (4.00-6.44)	6.17 (4.69-8.13)	6.96 (5.19-9.36)	7.81 (5.67-10.9)	8.82 (6.02-12.4)	10.3 (6.78-15.0)	11.6 (7.44-17.2)
2-day	3.18 (2.53-3.95)	3.86 (3.07-4.81)	4.97 (3.94-6.21)	5.89 (4.64-7.40)	7.17 (5.48-9.40)	8.11 (6.08-10.9)	9.13 (6.67-12.7)	10.3 (7.09-14.5)	12.2 (8.02-17.6)	13.7 (8.84-20.2)
3-day	3.44 (2.75-4.27)	4.18 (3.34-5.19)	5.39 (4.29-6.72)	6.40 (5.06-8.01)	7.78 (5.97-10.2)	8.80 (6.62-11.8)	9.91 (7.27-13.7)	11.2 (7.72-15.7)	13.3 (8.76-19.1)	15.0 (9.67-22.0)
4-day	3.68 (2.95-4.56)	4.47 (3.57-5.54)	5.75 (4.58-7.15)	6.82 (5.40-8.52)	8.29 (6.37-10.8)	9.37 (7.07-12.5)	10.5 (7.75-14.6)	12.0 (8.23-16.7)	14.1 (9.34-20.3)	16.0 (10.3-23.4)
7-day	4.36 (3.51-5.38)	5.24 (4.21-6.47)	6.69 (5.35-8.28)	7.89 (6.28-9.81)	9.54 (7.36-12.4)	10.8 (8.14-14.3)	12.1 (8.90-16.6)	13.7 (9.44-19.0)	16.1 (10.7-23.0)	18.2 (11.8-26.5)
10-day	5.05 (4.07-6.21)	5.99 (4.82-7.37)	7.52 (6.04-9.28)	8.80 (7.02-10.9)	10.5 (8.16-13.6)	11.9 (8.98-15.6)	13.3 (9.76-18.1)	14.9 (10.3-20.6)	17.4 (11.6-24.8)	19.5 (12.7-28.3)
20-day	7.23 (5.86-8.84)	8.23 (6.67-10.1)	9.88 (7.97-12.1)	11.2 (9.01-13.9)	13.1 (10.2-16.7)	14.5 (11.0-18.9)	16.0 (11.7-21.4)	17.6 (12.2-24.1)	19.8 (13.2-28.0)	21.6 (14.0-31.0
30-day	9.06 (7.37-11.0)	10.1 (8.20-12.3)	11.8 (9.53-14.4)	13.2 (10.6-16.2)	15.1 (11.7-19.1)	16.6 (12.5-21.3)	18.1 (13.2-23.8)	19.5 (13.6-26.6)	21.4 (14.4-30.1)	22.9 (14.9-32.7
45-day	11.3 (9.25-13.8)	12.4 (10.1-15.1)	14.1 (11.5-17.2)	15.6 (12.6-19.0)	17.5 (13.6-22.0)	19.1 (14.4-24.4)	20.6 (15.0-26.9)	21.9 (15.3-29.7)	23.5 (15.8-32.9)	24.6 (16.1-35.1
60-day	13.2 (10.8-16.0)	14.3 (11.7-17.3)	16.1 (13.1-19.5)	17.5	19.6 (15.2-24.5)	21.2 (16.1-26.9)	22.7 (16.5-29.4)	23.9 (16.8-32.4)	25.4 (17.1-35.4)	26.3 (17.2-37.4


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Du	iration
5-min	- 2-day
- 10-min	— 3-day
- 15-min	- 4-day
— 30-min	— 7-day
- 60-min	- 10-day
- 2-hr	- 20-day
— 3-hr	— 30-day
- 6-hr	- 45-day
- 12-hr	- 60-day
- 24-hr	

NOAA Atlas 14, Volume 10, Version 3

PDS-based depth-duration-frequency (DDF) curves Latitude: 41.8440°, Longitude: -71.8937°

Created (GMT): Wed May 24 18:50:55 2023

Back to Top

Maps & aerials

Small scale terrain

NOAA Atlas 14, Volume 10, Version 3 Location name: Dayville, Connecticut, USA* Latitude: 41.844°, Longitude: -71.8937° Elevation: 279 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

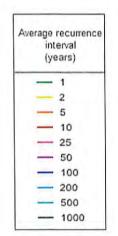
PF_tabular | PF_graphical | Maps_& aerials

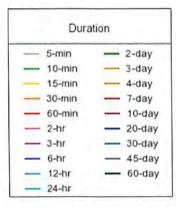
PF tabular

				Averag	ge recurrenc	e interval ()	(ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.01 (3.10-5.14)	4.76 (3.67-6.12)	6.00 (4.62-7.73)	7.02 (5.36-9.10)	8.44 (6.25-11.4)	9.52 (6.91-13.0)	10.6 (7.49-15.0)	11.8 (7.96-17.1)	13.5 (8.72-20.2)	14.8 (9.37-22.6)
10-min	2.84 (2.19-3.64)	3.37 (2.60-4.33)	4.25 (3.27-5.48)	4.97 (3.81-6.45)	5.98 (4.43-8.05)	6.74 (4.90-9.24)	7.52 (5.30-10.7)	8.37 (5.63-12.2)	9.55 (6.19-14.3)	10.5 (6.64-16.0)
15-min	2.22 (1.72-2.86)	2.64 (2.04-3.40)	3,33 (2.56-4.30)	3.90 (2.99-5.05)	4.69 (3.48-6.31)	5.28 (3.84-7.24)	5.90 (4.16-8.36)	6.56 (4.42-9.53)	7.49 (4.85-11.2)	8.23 (5.21-12.6)
30-min	1.55 (1.20-1.99)	1.84 (1.42-2.37)	2.32 (1.78-2.99)	2.71 (2.08-3.52)	3.26 (2.42-4.39)	3.67 (2.67-5.04)	4.10 (2.89-5.81)	4.56 (3.07-6.62)	5.20 (3.37-7.80)	5.71 (3.62-8.73)
60-min	0.993 (0.768-1.28)	1.18 (0.911-1.52)	1.49 (1.14-1.92)	1.74 (1.33-2.25)	2.09 (1.55-2.81)	2.35 (1.71-3.23)	2.63 (1.85-3.72)	2.92 (1.96-4.24)	3.33 (2.16-4.99)	3.66 (2.31-5.59)
2-hr	0.635 (0.493-0.811)	0.753 (0.584-0.962)	0.945 (0.731-1.21)	1.10 (0.850-1.42)	1.32 (0.989-1.78)	1.49 (1.09-2.04)	1.66 (1.19-2.36)	1.86 (1.26-2.69)	2.16 (1.40-3.22)	2.40 (1.52-3.65)
3-hr	0.487 (0.380-0.621)	0.578 (0.450-0.736)	0.726 (0.563-0.928)	0.848 (0.655-1.09)	1.02 (0.762-1.36)	1.14 (0.840-1.56)	1.28 (0.915-1.81)	1.44 (0.970-2.06)	1.67 (1.09-2.48)	1.87 (1.19-2.83)
6-hr	0.312 (0.244-0.395)	0.371 (0.290-0.470)	0.466 (0.364-0.593)	0.546 (0.423-0.697)	0.655 (0.493-0.874)	0.736 (0.544-1.00)	0.823 (0.594-1.16)	0.928 (0.629-1.33)	1.09 (0.709-1.60)	1.22 (0.779-1.84)
12-hr	0.196 (0.154-0.246)	0.233 (0.184-0.294)	0.295 (0.231-0.373)	0.346 (0.270-0.440)	0.417 (0.316-0.553)	0.470 (0.349-0.636)	0.526 (0.380-0.739)	0.593 (0.403-0.843)	0.693 (0.454-1.02)	0.778 (0.498-1.16)
24-hr	0.117 (0.093-0.147)	0.141 (0.111-0.177)	0.180 (0.142-0.226)	0.212 (0.166-0.268)	0.256 (0.195-0.338)	0.290 (0.216-0.390)	0.325 (0.236-0.454)	0.367 (0.250-0.518)	0.430 (0.282-0.626)	0.483 (0.310-0.716
2-day	0.066 (0.052-0.082)	0.080 (0.063-0.100)	0.103 (0.082-0.129)	0.122 (0.096-0.154)	0.149 (0.114-0.195)	0.168 (0.126-0.226)	0.190 (0.138-0.264)	0.215 (0.147-0.302)	0.253 (0.167-0.366)	0.286 (0.184-0.421
3-day	0.047 (0.038-0.059)	0.058 (0.046-0.072)	0.074 (0.059-0.093)	0.088 (0.070-0.111)	0.108 (0.082-0.141)	0.122 (0.092-0.163)	0.137 (0.100-0.190)	0.156 (0.107-0.218)	0.184 (0.121-0.265)	0.208 (0.134-0.305
4-day	0.038 (0.030-0.047)	0.046 (0.037-0.057)	0.059 (0.047-0.074)	0.071 (0.056-0.088)	0.086 (0.066-0.112)	0.097 (0.073-0.130)	0.109 (0.080-0.152)	0.124 (0.085-0.173)	0.147 (0.097-0.211)	0.166 (0.107-0.243
7-day	0.025 (0.020-0.031)	0.031 (0.025-0.038)	0.039 (0.031-0.049)	0.046 (0.037-0.058)	0.056 (0.043-0.073)	0.064 (0.048-0.084)	0.071 (0.053-0.098)	0.081 (0.056-0.112)	0.095 (0.063-0.137)	0.108 (0.070-0.157
10-day	0.021 (0.016-0.025)	0.024 (0.020-0.030)	0.031 (0.025-0.038)	0.036 (0.029-0.045)	0.043 (0.033-0.056)	0.049 (0.037-0.065)	0.055 (0.040-0.075)	0.062 (0.042-0.085)	0.072 (0.048-0.103)	0.081 (0.052-0.117
20-day	0.015 (0.012-0.018)	0.017 (0.013-0.020)	0.020 (0.016-0.025)	0.023 (0.018-0.028)	0.027 (0.021-0.034)	0.030 (0.022-0.039)	0.033 (0.024-0.044)	0.036 (0.025-0.050)	0.041 (0.027-0.058)	0.044 (0.029-0.064
30-day	0.012 (0.010-0.015)	0.014 (0.011-0.017)	0.016 (0.013-0.019)	0.018 (0.014-0.022)	0.020 (0.016-0.026)	0.023 (0.017-0.029)	0.025 (0.018-0.033)	0.027 (0.018-0.036)	0.029 (0.019-0.041)	0.031 (0.020-0.045
45-day	0.010	0.011 (0.009-0.013)	0.013 (0.010-0.015)	0.014 (0.011-0.017)	0.016 (0.012-0.020)	0.017 (0.013-0.022)	0.019 (0.013-0.024)	0.020 (0.014-0.027)	0.021 (0.014-0.030)	0.022
60-day	0.009	0.009	0.011	0.012	0.013	0.014	0.015	0.016	0.017 (0.011-0.024)	0.018

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

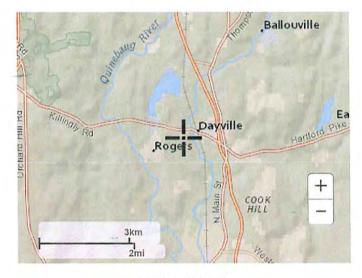

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.


Back to Top

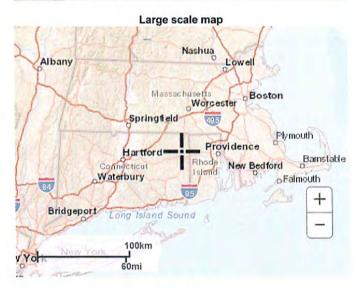
PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 41.8440°, Longitude: -71.8937°


NOAA Atlas 14, Volume 10, Version 3

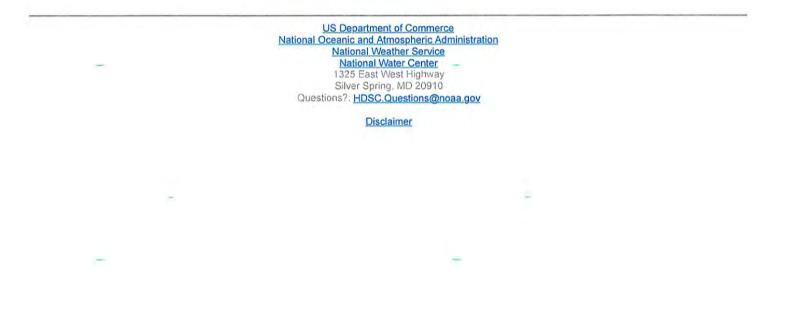
Created (GMT): Wed May 24 18:51:30 2023

Back to Top


Maps & aerials

Small scale terrain

Large scale terrain



Large scale aerial

Back to Top

Table 2-2aRunoff curve numbers for urban areas 1/2

				umbers for	
Cover description			hydrologic	soil group	
	Average perce	nt			
Cover type and hydrologic condition in	mpervious area	u ²/ A	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.)∛:					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:	•••••	00	01	• •	00
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:	•••••	00	00	50	50
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	38 89	92	93 93
Gravel (including right-of-way)		76	89 85	92 89	93 91
		70 72	82	89 87	91 89
Dirt (including right-of-way)	•••••	12	82	81	89
Western desert urban areas:		60	88	05	00
Natural desert landscaping (pervious areas only) 4/	•••••	63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch		0.0	0.0	0.0	0.0
and basin borders)		96	96	96	96
Urban districts:	~ ~	20		<u>.</u>	~
Commercial and business		89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)		77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) 5/		77	86	91	94
Idle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

		Curve numbers for hydrologic soil group					
	Cover description	Hydrologic		hydrologic s	oil group		
Cover type	Treatment ^{2/}	condition ^{3/}	А	В	С	D	
cover type					0		
Fallow	Bare soil	_	77	86	91	94	
Fallow	Crop residue cover (CR)	Poor	76	85	90	93	
		Good	74	83	88	90	
Row crops	Straight row (SR)	Poor	72	81	88	91	
	0 ()	Good	67	78	85	89	
	SR + CR	Poor	71	80	87	90	
		Good	64	75	82	85	
	Contoured (C)	Poor	70	79	84	88	
		Good	65	75	82	86	
	C + CR	Poor	69	78	83	87	
		Good	64	74	81	85	
	Contoured & terraced (C&T)	Poor	66	74	80	82	
		Good	62	71	78	81	
	C&T+ CR	Poor	65	73	79	81	
		Good	61	70	77	80	
Small grain	SR	Poor	65	76	84	88	
<u> </u>		Good	63	75	83	87	
	SR + CR	Poor	64	75	83	86	
		Good	60	72	80	84	
	С	Poor	63	74	82	85	
		Good	61	73	81	84	
	C + CR	Poor	62	73	81	84	
		Good	60	72	80	83	
	C&T	Poor	61	72	79	82	
		Good	59	70	78	81	
	C&T+ CR	Poor	60	71	78	81	
		Good	58	69	77	80	
Close-seeded	SR	Poor	66	77	85	89	
or broadcast		Good	58	72	81	85	
legumes or	С	Poor	64	75	83	85	
rotation	-	Good	55	69	78	85	
meadow	C&T	Poor	63	73	80	85	
		Good	51	67	76	80	
		6000	51	07	10	0	

 $^{\rm 1}$ Average runoff condition, and $\rm I_a{=}0.2S$

 2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2cRunoff curve numbers for other agricultural lands 1/

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	А	В	C	D	
Pasture, grassland, or range—continuous	Poor	68	79	86	89	
forage for grazing. $2/$	Fair Good	$\frac{49}{39}$	$\begin{array}{c} 69 \\ 61 \end{array}$	79 74	84 80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. ${}^{\mathcal{Y}}$	Poor Fair Good	48 35 30 4⁄	$67 \\ 56 \\ 48$	77 70 65	83 77 73	
Woods—grass combination (orchard or tree farm). 5/	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79	
Woods. 6/	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86	

¹ Average runoff condition, and $I_a = 0.2S$.

Poor: <50%) ground cover or heavily grazed with no mulch.
 Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

Poor: <50% ground cover.

3

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

 4 Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ *Poor:* Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.
 Fair: Woods are grazed but not burned, and some forest litter covers the soil.
 Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Table 2-2dRunoff curve numbers for arid and semiarid rangelands 1/2

Cover description	Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition ^{2/}	A 3⁄	В	С	D
Herbaceous-mixture of grass, weeds, and	Poor		80	87	93
low-growing brush, with brush the	Fair		71	81	89
minor element.	Good		62	74	85
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63
and other brush.	Good		30	41	48
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89
grass understory.	Fair		58	73	80
	Good		41	61	71
Sagebrush with grass understory.	Poor		67	80	85
	Fair		51	63	70
	Good		35	47	55
Desert shrub—major plants include saltbush,	Poor	63	77	85	88
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86
palo verde, mesquite, and cactus.	Good	49	68	79	84

 1 $\,$ Average runoff condition, and $I_a,$ = 0.2S. For range in humid regions, use table 2-2c.

 2 $\,$ Poor: <30% ground cover (litter, grass, and brush overstory).

Fair: 30 to 70% ground cover.

Good: > 70% ground cover.

³ Curve numbers for group A have been developed only for desert shrub.

Civil • Structural • Survey

317 MAIN STREET • NORWICH, CT 06360 • (860) 886-1966 • (860) 886-9165 FAX

Permeability of Soils using Compaction Permeameter

Date: 5/1, 5/2 & 5/3/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: Compacted to 100.0 lbs/cu ft per Soil Profiles Page #1

Sample #1: Basin #1

Permeability: 6.17 x 10-3 cm/sec or 17.5 ft/day

Sample #2: Basin #3

Permeability: 4.63 x 10-3 cm/sec or 13.1 ft/day

Sample #3: Basin #5

Permeability: 4.27 x 10-3 cm/sec or 12.1 ft/day

Sample #4: Basin #5

Permeability: 3.92 x 10-3 cm/sec or 11.2 ft/day

Thomas Cummings 5 MM 23 PE No. 9606

Civil • Structural • Survey

317 MAIN STREET • NORWICH, CT 06360 • (860) 886-1966 • (860) 886-9165 FAX

Permeability of Soils using Compaction Permeameter

Date: 5/1, 5/2 & 5/3/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: Compacted to 100.0 lbs/cu ft per Soil Profiles Page #2

Sample #1: Basin #6

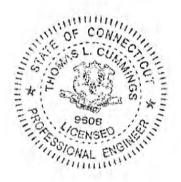
Permeability: 2.92 x 10-3 cm/sec or 8.3 ft/day

Sample #2: Basin #4

Permeability: 3.03 x 10-4 cm/sec or .85 ft/day

Thomas Cummings 5MAy 23 PE No. 9606

Civil • Structural • Survey


317 MAIN STREET	•	NORWICH, CT 06360	•	(860) 886-1966		(860) 886-9165 FAX
-----------------	---	-------------------	---	----------------	--	--------------------

SIEVE ANALYSIS

Date: 5/1/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: N/A Sample Designation: Basin #1

Sieve Size	% Passing
3/4 in	69.6
1/4 in	51.0
#4	47.8
#10	37.2
#20	22.7
#40	11.1
#60	6.7
#100	4.4
#200	2.5
AL	

Thomas Cummings 5 ML 23 PE No. 9606

Civil • Structural • Survey

317 MAIN STREET • NORWICH, CT 06360 • (860) 886-1966 • (860) 886-9165 FAX

SIEVE ANALYSIS

Date: 5/1/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: N/A Sample Designation: Basin #2

Sieve Size	% Passing
3/4 in	65.8
¼ in	47.2
#4	44.3
#10	34.5
#20	23.5
#40	13.9
#60	9.4
#100	6.6
#200	4.0
HL	

Thomas Cummings 5 MAy 23 PE No. 9606

Civil • Structural • Survey

317 MAIN STREET	•	NORWICH, CT 06360	•	(860) 886-1966		(860) 886-9165 FAX
------------------------	---	-------------------	---	----------------	--	--------------------

SIEVE ANALYSIS

Date: 5/1/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: N/A Sample Designation: Basin #3

Sieve Size	% Passing
3/4 in	85.7
1/4 in	76.8
#4	74.1
#10	61.3
#20	37.4
#40	18.8
#60	9.8
#100	5.9
#200	3.4
HE	
Thomas Cummings 5 MAY 23	

PE No. 9606

Civil • Structural • Survey

317 MAIN STREET	•	NORWICH, CT 06360		(860) 886-1966		(860) 886-9165 FAX
-----------------	---	-------------------	--	----------------	--	--------------------

SIEVE ANALYSIS

Date: 5/2/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: N/A Sample Designation: Basin #4

% Passing	
100	
95.6	
95.0	
93.1	
91.5	
90.0	
88.4	
84.5	
52.5	
THE SL. CUMPTINGS	

SIONAL ENG

Civil • Structural • Survey

317 MAIN STREET • NORWICH, CT 06360 • (860) 886-1966 • (860) 886-9165 FAX

SIEVE ANALYSIS

Date: 5/1/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: N/A Sample Designation: Basin #5

Sieve Size	% Passing	
3/4 in	76.3	
1/4 in	60.8	
#4	57.1	
#10	44.5	
#20	26.9	
#40	15.6	
#60	11.0	
#100	7.8	
#200	4.6	
AL		
Thomas Cummings 5 may 23 PE No. 9606	NINOF CONNECTION	
	LE CUT	

SIONAL

Civil • Structural • Survey

317 MAIN STREET • NORWICH, CT 06360 • (860) 886-1966 • (860) 886-9165 FAX

SIEVE ANALYSIS

Date: 5/2/2023 Project: Colonial Drive, Killingly, Ct. CLA Project #: 7283 Material: On-site material (Test Pits) Specification: N/A Sample Designation: Basin #6

Sieve Size	% Passing
3/4 in	75.9
¹ /4 in	49.3
#4	46.5
#10	34.5
#20	26.4
#40	21.8
#60	17.8
#100	13.3
#200	7.8
IN	
1 +	

Thomas Cummings 54147 23 PE No. 9606

APPENDIX B

Soil Resource Report

CLA Engineers, Inc.

Civil • Structural • Survey

USDA United States Department of Agriculture

Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for State of Connecticut

25 Colonial Drive

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require


alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Soil Information for All Uses	
Soil Properties and Qualities	
Soil Qualities and Features	
Hydrologic Soil Group	9
, , , , , , , , , , , , , , , , , , , ,	

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND			MAP INFORMATION	
	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:12,000.	
Soils	Soil Map Unit Polygons	00 V	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.	
ĩ			∆ Other Enl mis	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of	
ల	Point Features Blowout	Water Fea	•	contrasting soils that could have been shown at a more detailed scale.	
×	Borrow Pit Clay Spot	Transport +++	ation Rails	Please rely on the bar scale on each map sheet for map measurements.	
× *	Closed Depression Gravel Pit Gravelly Spot	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	
 Ø	Landfill Lava Flow	~	Major Roads Local Roads -	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts	
人 小 父	Marsh or swamp Mine or Quarry	Backgroun	nd Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	
0	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	
~ +	Rock Outcrop Saline Spot			Soil Survey Area: State of Connecticut Survey Area Data: Version 22, Sep 12, 2022	
 	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	
♦	Sinkhole Slide or Slip			Date(s) aerial images were photographed: Jun 14, 2022—Jul 1, 2022	
ġ	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
7 Timakwa and Natchaug soils, 0 to 2 percent slopes		0.3	1.6%
23A	Sudbury sandy loam, 0 to 5 percent slopes	3.3	17.5%
36A	Windsor loamy sand, 0 to 3 percent slopes	0.3	1.6%
36B	Windsor loamy sand, 3 to 8 percent slopes	3.0	16.0%
38C	Hinckley loamy sand, 3 to 15 percent slopes	11.7	62.0%
Hinckley loamy sand, 15 to 45 percent slopes		0.3	1.4%
Totals for Area of Interest		18.9	100.0%

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

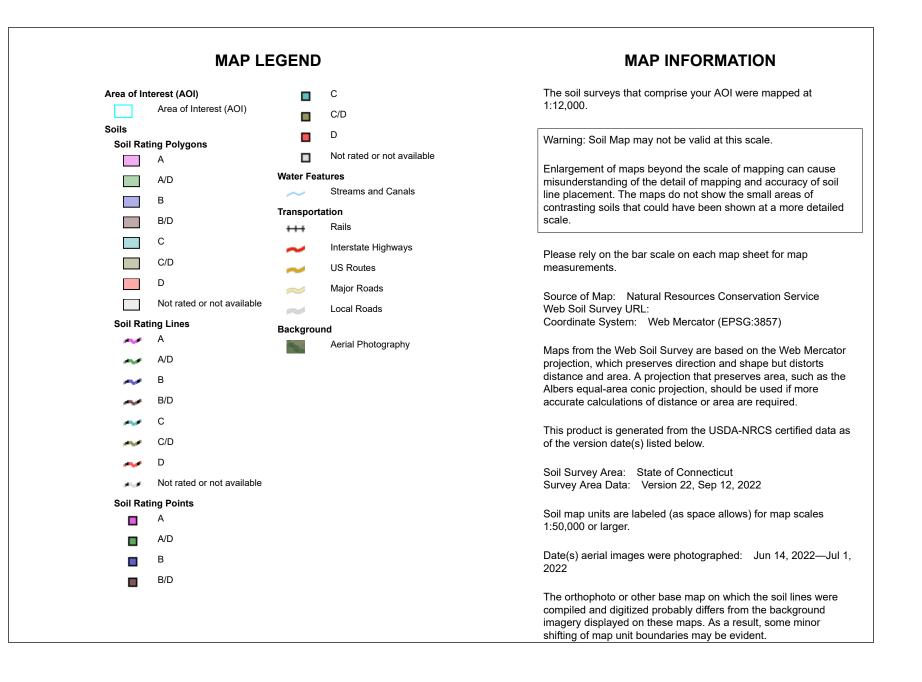
Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.


Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Table—Hydrologic	Soil Group
------------------	------------

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Map and Symbol	indp unit name	Rating	Acres III Aor	I elcent of Aor
17	Timakwa and Natchaug soils, 0 to 2 percent slopes	B/D	0.3	1.6%
23A	Sudbury sandy loam, 0 to 5 percent slopes	В	3.3	17.5%
36A	Windsor loamy sand, 0 to 3 percent slopes	A	0.3	1.6%
36B	Windsor loamy sand, 3 to 8 percent slopes	A	3.0	16.0%
38C	Hinckley loamy sand, 3 to 15 percent slopes	A	11.7	62.0%
38E	Hinckley loamy sand, 15 to 45 percent slopes	A	0.3	1.4%
Totals for Area of Interest			18.9	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher