

STORMWATER MANAGEMENT REPORT

PROPOSED KILLINGLY HIGH SCHOOL SOLAR PROJECT

226 PUTNAM PIKE KILLINGLY, CONNECTICUT WINDHAM COUNTY

Prepared for:

Greenskies Clean Energy, LLC 127 Washington Avenue West Building, Garden Level Middletown, CT 06457

Prepared by:

All-Points Technology Corporation, P.C. 567 Vauxhall Street Extension, Suite 311 Waterford, CT 06385

June 2021

Table of Contents

INTRODUCTION	1
EXISTING SITE CONDITIONS	1
DEVELOPED SITE CONDITIONS	1
STORMWATER MANAGEMENT	2
CONCLUSION	4

Tables

TABLE 1 PRE-DEVELOPED PEAK STORM RUNOFF (Q) 2
TABLE 2 POST-DEVELOPED PEAK STORM RUNOFF (Q)
TABLE 3 PEAK STORM RUNOFF (Q) COMPARISON PRE- & POST
TABLE 4 OVERALL PRE- AND POST-DEVELOPMENT PEAK STORM RUNOFF (Q) COMPARISON

Appendices

APPENDIX A: NRCS SOIL SURVEY

APPENDIX B: EXISTING DRAINAGE AREA MAP (EDA-1) & HYDROLOGIC COMPUTATION (HYDROCAD) APPENDIX C: PROPOSED DRAINAGE AREA MAP (PDA-1) & HYDROLOGIC COMPUTATION (HYDROCAD) APPENDIX D: NOAA ATLAS 14 PRECIPITATION FREQUENCY TABLE APPENDIX E: ADDITIONAL CALCULATIONS APPENDIX F: GEOTECHNICAL REPORT

Introduction

At the request of Greenskies Clean Energy, LLC, All-Points Technology Corporation, P.C. ("APT") has prepared the following analysis of and design to address stormwater impacts resulting from the development of a proposed 1.068 MW direct current ("DC") (0.809 MW alternating current ("AC")) solar electric generating facility herein referred to as Killingly HS Solar (the "Project") located at 226 Putnam Pike, in Killingly, Connecticut (the "Site").

The purpose of this report is to provide a description and analysis of the potential stormwater drainage impacts associated with the Project, as well as a description of the design to mitigate such potential stormwater drainage impacts. The design is intended to be in full compliance with the State and Town regulations while taking prevailing site conditions and practical factors into account.

Existing Site Conditions

The Site consists of an irregularly shaped $141.59\pm$ acres parcel, with the Project area specifically located in an existing wooded area to the south of the High School. The central portion of the Site consists of the high school buildings and associated parking and athletic fields. The remainder of the site is primarily undeveloped wooded land with a small portion of cleared field, used by the school, in the south east. The parcel is zoned "Rural Development" per the Town of Killingly zoning regulation. Access to the Site is from a paved driveway off of Putnam Pike/Route 12.

The Project's area, consisting of the proposed solar facility and appurtenances, existing topography generally slopes downward from the south to the north. Within the specific Project area, the topography includes slopes that are less than 15 percent. Elevations within the Project area range from approximately 467 feet AMSL to the south to approximately 400 feet AMSL to the north along the driveway.

Developed Site Conditions

The Project will be constructed south of the high school and east of the existing cleared field. Access to the Project area will be provided via an existing gravel access road off the main high school driveway. The Project includes the installation of (1,050) 360W solar panel modules, (1,536) 450W solar panel modules, and associated fencing, access road, utilities, and stormwater management features, within approximately $6.44\pm$ acres of the Site. Of the $6.44\pm$ acres of disturbance, $4.67\pm$ acres will require clearing and grubbing for the installation of the fenced solar facility and associated stormwater management and erosion and sediment control features. The remaining $1.77\pm$ acres is anticipated to require tree cutting only for shading purposes.

The proposed solar panels will be installed on a post driven ground mounted racking system, with minimal changes to the existing grades. As a result, the post-development site conditions will mimic the pre-developed site conditions. Areas of clearing and grubbing and any existing ground cover that is disturbed during construction will be reseeded with a low growth seed mix.

Stormwater Management Report Killingly HS School, Killingly, CT June 2021

In order to account for the change in ground cover and time of concentration, grass-lined stormwater management basins are proposed to the north of the fenced facility.

Stormwater Management

Analysis Methodology

The hydrologic analysis was performed using the HydroCAD stormwater modeling system computer program developed by HydroCAD Software Solutions, LLC.

Hydrographs for each watershed were developed using the SCS Synthetic Unit Hydrograph Method with a Type III rainfall distribution. Hydrographs were developed for the NOAA Atlas 14, Volume 10, Version 3 Precipitation 2-, 25-, 50-, and 100-year storm event with rainfall depths of 3.40, 6.21, 7.01, and 7.87 inches respectively.

The existing and proposed drainage areas used in the calculations are illustrated on the Existing and Proposed Drainage Area Plans (EDA-1 & PDA-1). These maps and the corresponding HydroCAD output are attached.

The Water Quality Volume ("WQV") for the site will be calculated assuming that the roadways, gravel surfaces, and transformer pads are effectively impervious cover. The panels are not considered impervious cover for purposes of the WQV calculations.

The Project area soils identified by the United States Department of Agriculture (USDA) Natural Resources Conservation Service consist primarily of a HSG rating of "B", with portions with a HSG rating of "C" and "D". The specific Map Unit Symbol soils include 62C, 86C, and 47C. Specific details for each soil Map Unit Symbol are provided in Appendix A.

Existing Drainage Patterns

The Project area drains from the south to the north, with a portion of off-site watershed draining onto the Site from the south. The Site is modeled at two (2) Analysis Points ("AP-1" and "AP-2"). AP-1 is the existing 24" culvert that runs under the existing driveway. AP-2 is the existing 15" culvert that runs under the existing driveway. Peak discharges have been computed at the points of study for the 2-, 25-, 50-, and 100-year storm events.

The pre-developed peak discharges at each analysis point are tabulated in Table 1.

	Pre-developed Peak Storm Runoff (Q), cubic feet per			
Analysis Point	second (cfs)			
	2-year	25-year	50-year	100-year
AP-1	2.04	10.91	14.00	17.49
AP-2	0.58	4.09	5.37	6.85

Table 1

Proposed Drainage Patterns

The Project will require clearing and grubbing in the immediate area for the proposed solar installation, including the necessary utilities, access road, and stormwater management features, resulting in approximately $6.44\pm$ acres of disturbance.

To manage the increase in post-development runoff due to the change in cover type associated with converting woods to meadow within the proposed limit of disturbance, one (1) grass-lined stormwater management basin with a forebay is proposed to the north of the project area. The basin is designed with two (2) low flow culverts that are intended to direct clean runoff to maintain existing hydrologic conditions to the two delineated wetlands to the north and west. Additionally, a swale along the northern fence line and an earthen berm along the northwestern fence line are proposed to direct water to the basin. A forebay has been designed to provide the WQV. See attached calculations. Additional flow and volume control out of the basin is provided via rip-rap lined overflow weirs and plunge pool level spreaders at the end of each low flow culvert.

Since the proposed development mimics the existing conditions, the post-development condition was modeled using the same Analysis Point. Peak discharges have been computed at the point of study for the 2-year, 25-year, 50-year, and 100-year storm events. The post-development discharges at each point of study are tabulated in Table 1.

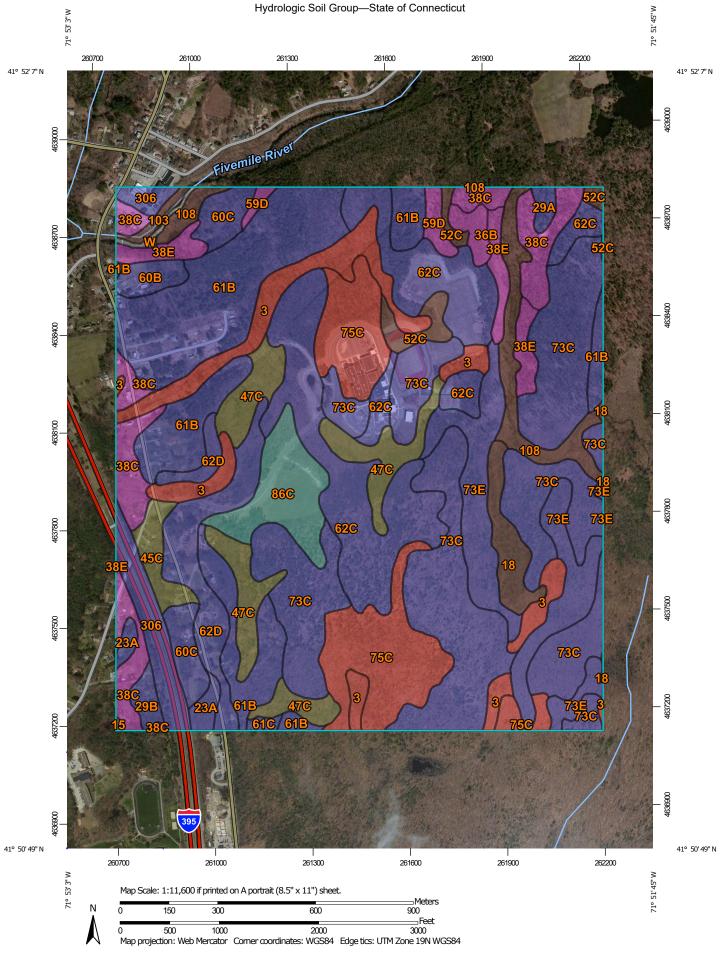
Analysis Point	Post-developed Peak Storm Runoff (Q), cubic feet per second (cfs)			-		ubic feet per
	2-year	25-year	50-year	100-year		
AP-1	0.64	3.61	9.07	15.08		
AP-2	0.53	3.46	4.48	5.58		

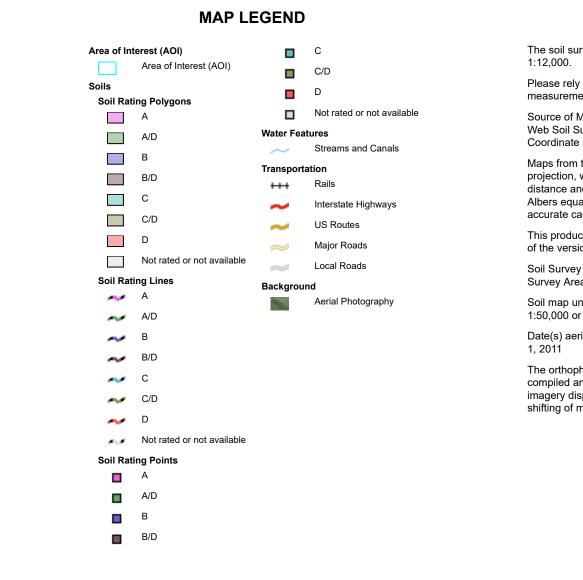
Table 2

The reduction in runoff achieved by the post-development discharges in comparison with the pre-development discharges are tabulated in Table 3.

Table 3

Analysis Point	Peak Storm Runoff (Q) Comparison Pre- and Post-, Percent (%) Decrease			- and Post-,
	2-year	25-year	50-year	100-year
AP-1	69%	67%	35%	14%
AP-2	9%	15%	17%	19%


Conclusion


The stormwater management for the proposed Project has been designed such that the postdevelopment peak discharges to the waters of the State of Connecticut for the 2-, 25-, 50-, and 100- year storm events are less than the pre-development peak discharges, as seen in Table 4, Overall Pre-Development verse Post-Development Peak Discharge Summary, below. As a result, the proposed solar array will not result in any adverse conditions to the surrounding areas and properties.

Overall Pre- and Post-Development Peak Storm Runoff (Q) Comparison, cubic feet per second (CFS)				
AP-1	2-year	25-year	50-year	100-year
Existing (AP-1)	2.04	10.91	14.00	17.49
Proposed (AP-1)	0.64	3.61	9.07	15.08
% Difference	69%	67%	35%	14%
AP-2	2-year	25-year	50-year	100-year
Existing (AP-2)	0.58	4.09	5.37	6.85
Proposed (AP-2)	0.53	3.46	4.48	5.58
% Difference	9%	15%	17%	19%

Table 4

APPENDIX A: NRCS SOIL SURVEY

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut Survey Area Data: Version 20, Jun 9, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 30, 2011—May 1, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
3	Ridgebury, Leicester, and Whitman soils, 0 to 8 percent slopes, extremely stony	D	33.7	5.4%
15	Scarboro muck, 0 to 3 percent slopes	A/D	0.1	0.0%
18	Catden and Freetown soils, 0 to 2 percent slopes	B/D	9.6	1.5%
23A	Sudbury sandy loam, 0 to 5 percent slopes	В	4.0	0.7%
29A	Agawam fine sandy loam, 0 to 3 percent slopes	В	2.0	0.3%
29B	Agawam fine sandy loam, 3 to 8 percent slopes	В	3.0	0.5%
36B	Windsor loamy sand, 3 to 8 percent slopes	A	3.6	0.6%
38C	Hinckley loamy sand, 3 to 15 percent slopes	A	29.2	4.7%
38E	Hinckley loamy sand, 15 to 45 percent slopes	A	11.8	1.9%
45C	Woodbridge fine sandy loam, 8 to 15 percent slopes	C/D	6.6	1.1%
47C	Woodbridge fine sandy loam, 3 to 15 percent slopes, extremely stony	C/D	31.2	5.0%
52C	Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony	B/D	7.3	1.2%
59D	Gloucester gravelly sandy loam, 15 to 35 percent slopes, extremely stony	A	4.1	0.7%
60B	Canton and Charlton fine sandy loams, 3 to 8 percent slopes	В	4.8	0.8%
60C	Canton and Charlton fine sandy loams, 8 to 15 percent slopes	В	12.0	1.9%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
61B	Canton and Charlton fine sandy loams, 0 to 8 percent slopes, very stony	В	84.0	13.5%
61C	Canton and Charlton fine sandy loams, 8 to 15 percent slopes, very stony	В	1.0	0.2%
62C	Canton and Charlton fine sandy loams, 3 to 15 percent slopes, extremely stony	В	76.4	12.3%
62D	Canton and Charlton fine sandy loams, 15 to 35 percent slopes, extremely stony	В	24.4	3.9%
73C	Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky	В	131.7	21.2%
73E	Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky	В	38.0	6.1%
75C	Hollis-Chatfield-Rock outcrop complex, 3 to 15 percent slopes	D	48.0	7.7%
86C	Paxton and Montauk fine sandy loams, 3 to 15 percent slopes, extremely stony	С	19.1	3.1%
103	Rippowam fine sandy loam	B/D	1.9	0.3%
108	Saco silt loam	B/D	17.0	2.7%
306	Udorthents-Urban land complex	В	14.9	2.4%
W	Water		1.2	0.2%
Totals for Area of Inter	est	•	620.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

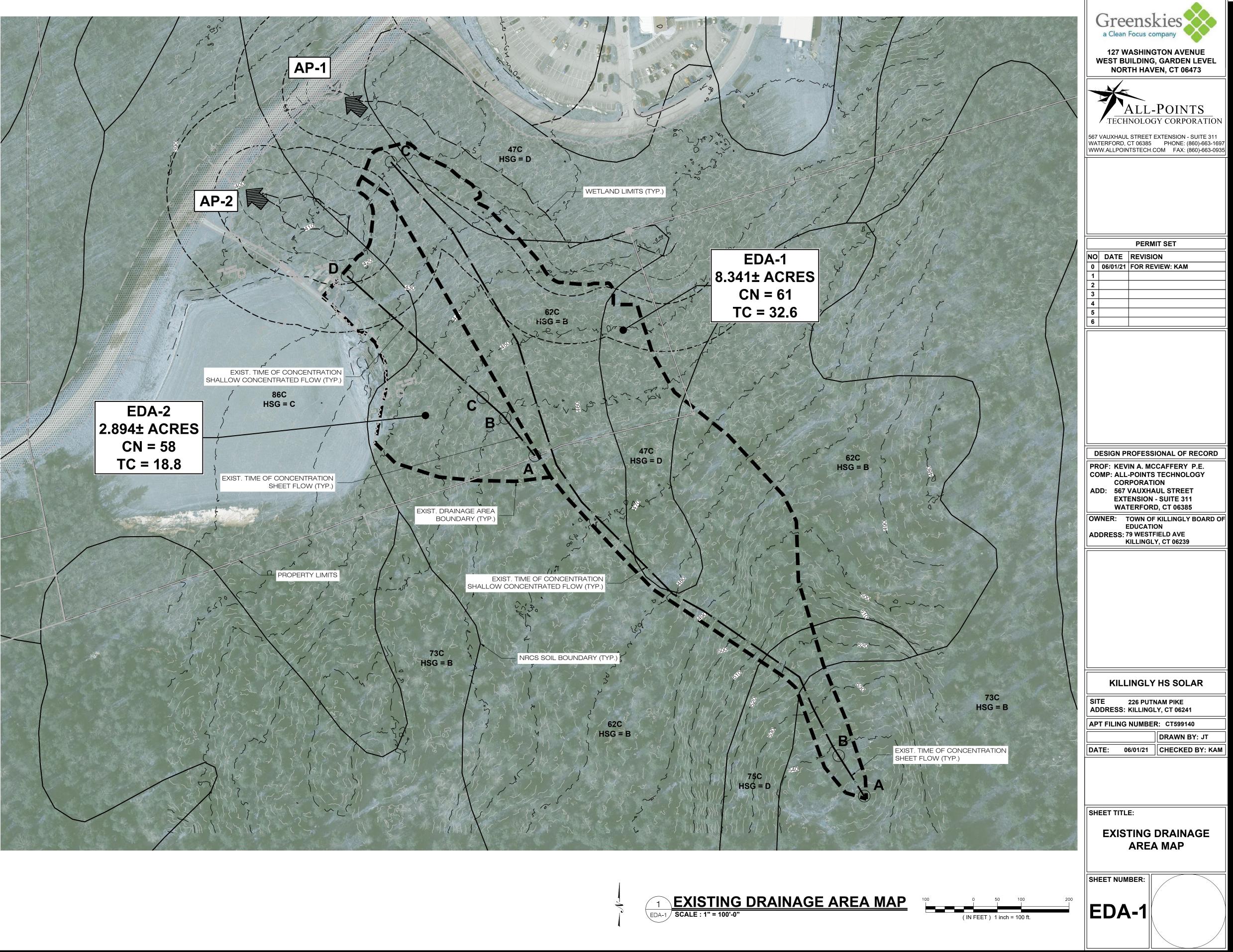
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

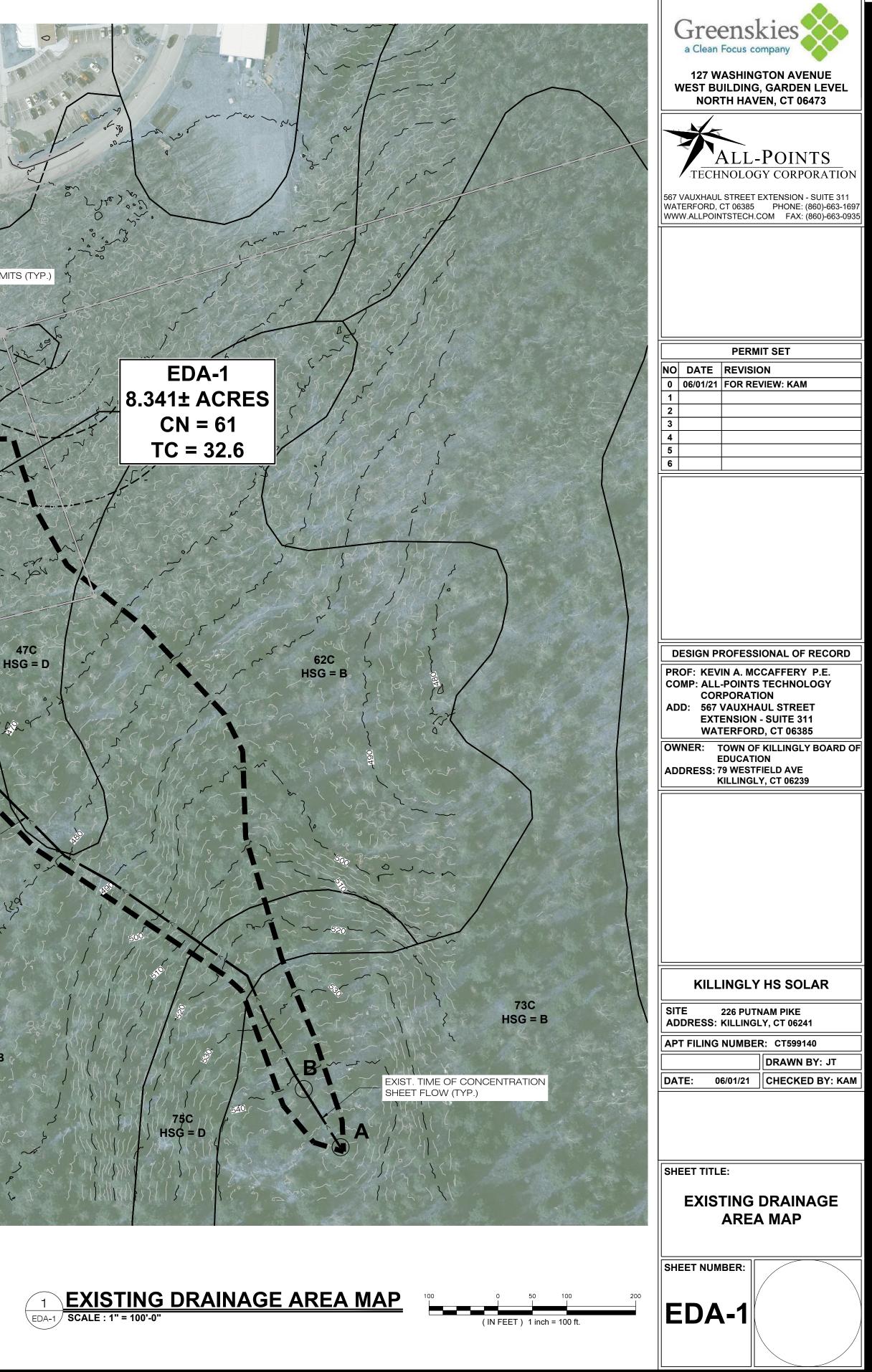
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

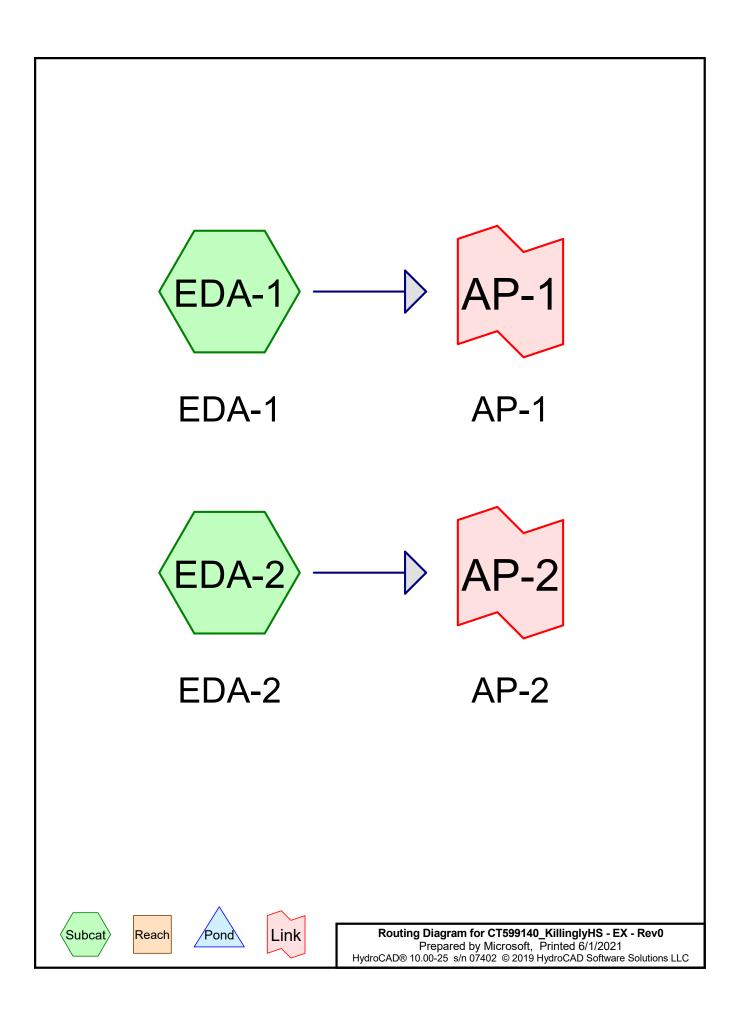
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


APPENDIX B: EXISTING DRAINAGE AREA MAP (EDA-1) & Hydrologic Computation (HydroCAD)


EXISTING DRAINAGE AREAS


TOTAL AREA (ACRES)	COMPOSITE CN	TC (MINS.)
8.341	61	32.6
2.894	58	18.8
	8.341	8.341 61

EXISTING CONDITION PEAK FLOWS

ANALYSIS POINT	2-YEAR (CFS)	25-YEAR (CFS)	50-YEAR (CFS)	100-YEAR (CFS)
AP-1	2.04	10.91	14.00	17.49
AP-2	0.58	4.09	5.37	6.85

CT599140_KillinglyHS - EX - Rev0 Prepared by Microsoft HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	n CN	Description
(acres))	(subcatchment-numbers)
8.457	7 55	Woods, Good, HSG B (EDA-1, EDA-2)
0.631	70	Woods, Good, HSG C (EDA-2)
2.147	77	Woods, Good, HSG D (EDA-1)
11.235	5 60	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
8.457	HSG B	EDA-1, EDA-2
0.631	HSG C	EDA-2
2.147	HSG D	EDA-1
0.000	Other	
11.235		TOTAL AREA

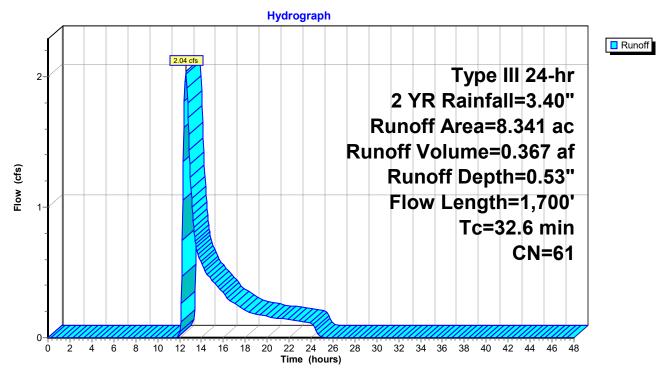
CT599140_KillinglyHS - EX - Rev0

Prepared by Microsoft	
HydroCAD® 10.00-25 s/n 07402	© 2019 HydroCAD Software Solutions LLC

	Ground Covers (all hodes)								
	HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers	
_	0.000 0.000	8.457 8.457	0.631 0.631	2.147 2.147	0.000 0.000	11.235 11.235	Woods, Good TOTAL AREA	EDA-1, EDA-2	

Ground Covers (all nodes)

CT599140_KillinglyHS - EX - Rev Prepared by Microsoft	0 Type III 24-hr 2 YR Rainfall=3.40" Printed 6/1/2021						
HydroCAD® 10.00-25 s/n 07402 © 2019	HydroCAD Software Solutions LLC Page 5						
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method , Pond routing by Dyn-Stor-Ind method							
Subcatchment EDA-1: EDA-1	Runoff Area=8.341 ac 0.00% Impervious Runoff Depth=0.53" Flow Length=1,700' Tc=32.6 min CN=61 Runoff=2.04 cfs 0.367 af						
Subcatchment EDA-2: EDA-2	Runoff Area=2.894 ac 0.00% Impervious Runoff Depth=0.41" Flow Length=544' Tc=18.8 min CN=58 Runoff=0.58 cfs 0.100 af						
Link AP-1: AP-1	Inflow=2.04 cfs 0.367 af Primary=2.04 cfs 0.367 af						
Link AP-2: AP-2	Inflow=0.58 cfs 0.100 af Primary=0.58 cfs 0.100 af						
Total Runoff Area = 11.2	235 ac Runoff Volume = 0.467 af Average Runoff Depth = 0.50" 100.00% Pervious = 11.235 ac 0.00% Impervious = 0.000 ac						

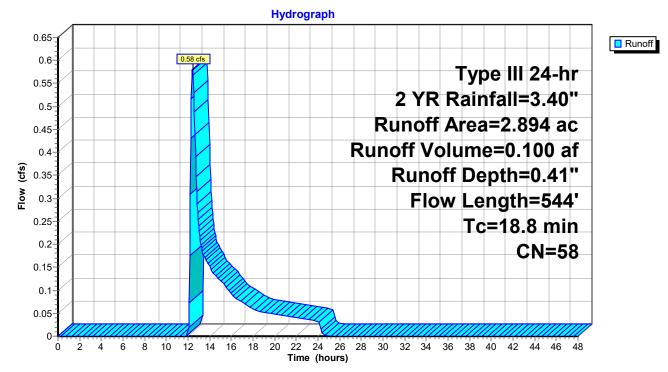

Summary for Subcatchment EDA-1: EDA-1

Runoff = 2.04 cfs @ 12.58 hrs, Volume= 0.367 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YR Rainfall=3.40"

A	rea	(ac) C	N Des	cription		
	-			ods, Good,		
	2.	147 7	77 Woo	ods, Good,	HSG D	
	8.	341 6	61 Weig	ghted Aver	age	
	8.	341	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13	3.3	100	0.0663	0.12		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.18"
19	9.3	1,600	0.0764	1.38		Shallow Concentrated Flow, B-C
		·				Woodland Kv= 5.0 fps
32	2.6	1,700	Total			

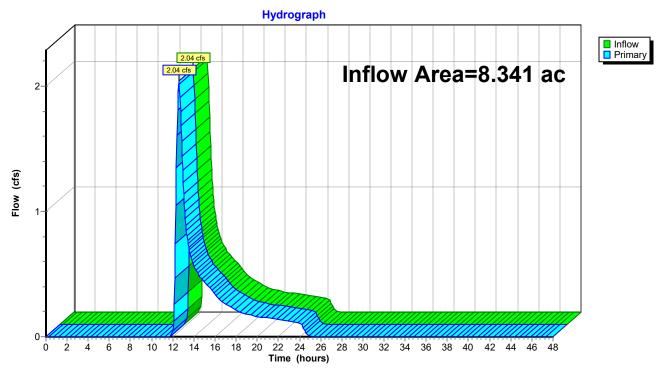
Subcatchment EDA-1: EDA-1


Summary for Subcatchment EDA-2: EDA-2

Runoff = 0.58 cfs @ 12.42 hrs, Volume= 0.100 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YR Rainfall=3.40"

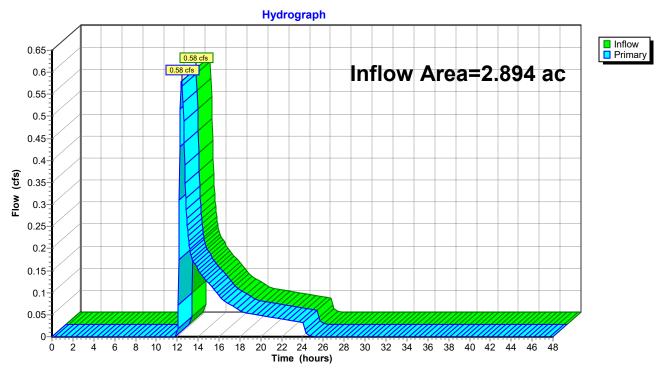
Area	(ac) C	N Desc	cription		
			ds, Good,		
0.	<u>631 7</u>	<u>'0 Woo</u>	ds, Good,	HSG C	
2.	894 5	58 Weig	ghted Aver	age	
2.	894	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.0	100	0.0588	0.12		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.18"
0.7	63	0.0903	1.50		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
4.1	381	0.0979	1.56		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
18.8	544	Total			


Subcatchment EDA-2: EDA-2

Summary for Link AP-1: AP-1

Inflow Area =	8.341 ac,	0.00% Impervious, Inflow	Depth = 0.53"	for 2 YR event
Inflow =	2.04 cfs @	12.58 hrs, Volume=	0.367 af	
Primary =	2.04 cfs @	12.58 hrs, Volume=	0.367 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Link AP-1: AP-1

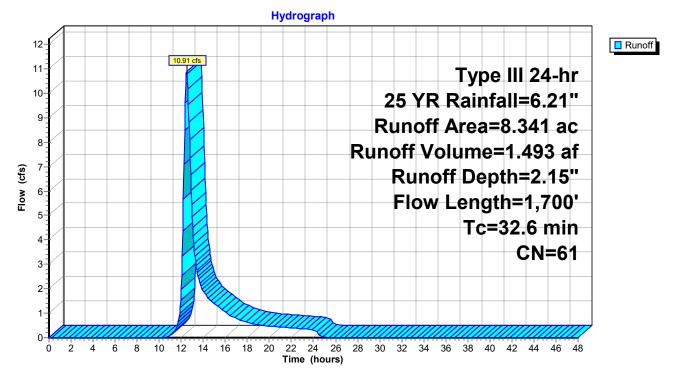
Summary for Link AP-2: AP-2

Inflow Area =	2.894 ac,	0.00% Impervious, Inflow E	Depth = 0.41"	for 2 YR event
Inflow =	0.58 cfs @	12.42 hrs, Volume=	0.100 af	
Primary =	0.58 cfs @	12.42 hrs, Volume=	0.100 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Link AP-2: AP-2

CT599140_KillinglyHS - EX - Reverse Prepared by Microsoft	Printed 6/1/2021					
HydroCAD® 10.00-25 s/n 07402 © 2019 H	HydroCAD Software Solutions LLC Page 10					
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						
Subcatchment EDA-1: EDA-1	Runoff Area=8.341 ac 0.00% Impervious Runoff Depth=2.15" Flow Length=1,700' Tc=32.6 min CN=61 Runoff=10.91 cfs 1.493 af					
Subcatchment EDA-2: EDA-2	Runoff Area=2.894 ac 0.00% Impervious Runoff Depth=1.89" Flow Length=544' Tc=18.8 min CN=58 Runoff=4.09 cfs 0.456 af					
Link AP-1: AP-1	Inflow=10.91 cfs 1.493 af Primary=10.91 cfs 1.493 af					
Link AP-2: AP-2	Inflow=4.09 cfs 0.456 af Primary=4.09 cfs 0.456 af					
Total Runoff Area = 11.2	235 ac Runoff Volume = 1.948 af Average Runoff Depth = 2.08" 100.00% Pervious = 11.235 ac 0.00% Impervious = 0.000 ac					

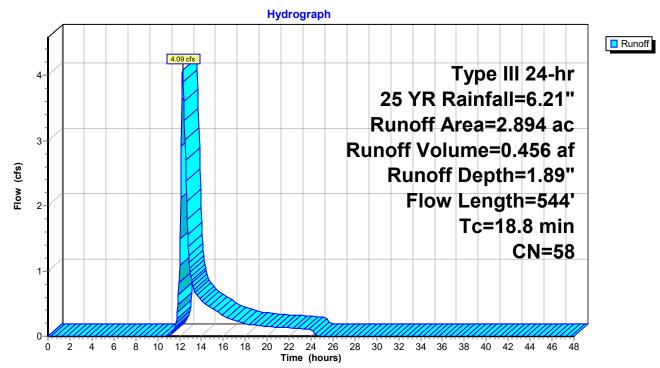

Summary for Subcatchment EDA-1: EDA-1

Runoff = 10.91 cfs @ 12.49 hrs, Volume= 1.493 af, Depth= 2.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25 YR Rainfall=6.21"

A	rea	(ac) C	N Des	cription		
	-			ods, Good,		
	2.	147 7	77 Woo	ods, Good,	HSG D	
	8.	341 6	61 Weig	ghted Aver	age	
	8.	341	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13	3.3	100	0.0663	0.12		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.18"
19	9.3	1,600	0.0764	1.38		Shallow Concentrated Flow, B-C
		·				Woodland Kv= 5.0 fps
32	2.6	1,700	Total			

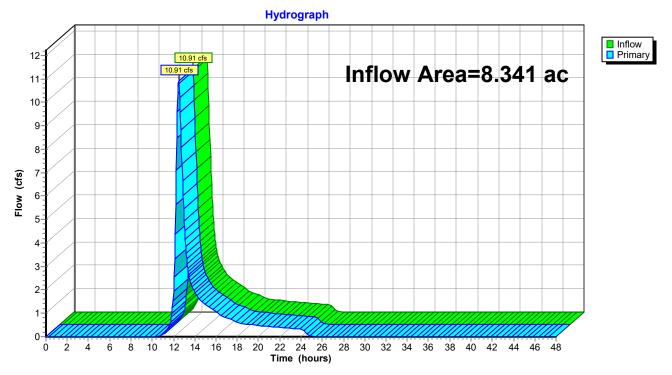
Subcatchment EDA-1: EDA-1


Summary for Subcatchment EDA-2: EDA-2

Runoff = 4.09 cfs @ 12.29 hrs, Volume= 0.456 af, Depth= 1.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25 YR Rainfall=6.21"

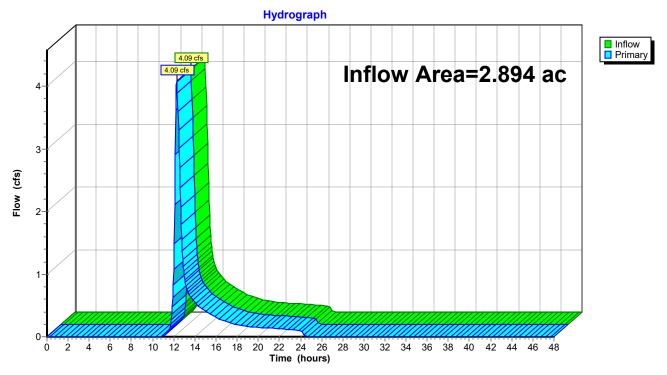
Area	(ac) C	N Des	cription		
			ods, Good,		
0.	<u>631 7</u>	70 Woo	ods, Good,	HSG C	
2.	894 5	58 Wei	ghted Avei	age	
2.	894	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.0	100	0.0588	0.12		Sheet Flow, A-B
0.7	63	0.0903	1.50		Woods: Light underbrush n= 0.400 P2= 3.18" Shallow Concentrated Flow, B-C
4.1	381	0.0979	1.56		Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D Woodland Kv= 5.0 fps
18.8	544	Total			


Subcatchment EDA-2: EDA-2

Summary for Link AP-1: AP-1

Inflow Are	a =	8.341 ac,	0.00% Impervious,	Inflow Depth = 2.1	5" for 25 YR event
Inflow	=	10.91 cfs @	12.49 hrs, Volume	= 1.493 af	
Primary	=	10.91 cfs @	12.49 hrs, Volume	e= 1.493 af, ⊿	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Link AP-1: AP-1

Summary for Link AP-2: AP-2

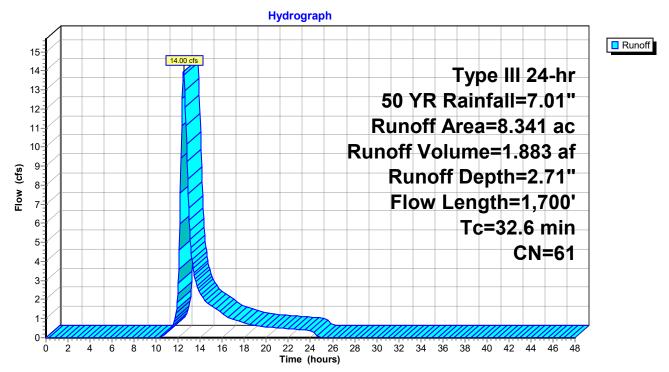
Inflow Area =	2.894 ac,	0.00% Impervious, Inflow [Depth = 1.89"	for 25 YR event
Inflow =	4.09 cfs @	12.29 hrs, Volume=	0.456 af	
Primary =	4.09 cfs @	12.29 hrs, Volume=	0.456 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Link AP-2: AP-2

CT599140_KillinglyHS - EX - Rev Prepared by Microsoft	0 Type III 24-hr 50 YR Rainfall=7.01" Printed 6/1/2021					
HydroCAD® 10.00-25 s/n 07402 © 2019 H	HydroCAD Software Solutions LLC Page 15					
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method , Pond routing by Dyn-Stor-Ind method						
Subcatchment EDA-1: EDA-1	Runoff Area=8.341 ac 0.00% Impervious Runoff Depth=2.71" Flow Length=1,700' Tc=32.6 min CN=61 Runoff=14.00 cfs 1.883 af					
Subcatchment EDA-2: EDA-2	Runoff Area=2.894 ac 0.00% Impervious Runoff Depth=2.42" Flow Length=544' Tc=18.8 min CN=58 Runoff=5.37 cfs 0.583 af					
Link AP-1: AP-1	Inflow=14.00 cfs 1.883 af Primary=14.00 cfs 1.883 af					
Link AP-2: AP-2	Inflow=5.37 cfs 0.583 af Primary=5.37 cfs 0.583 af					
Total Runoff Area = 11.2	235 ac Runoff Volume = 2.466 af Average Runoff Depth = 2.63" 100.00% Pervious = 11.235 ac 0.00% Impervious = 0.000 ac					

Summary for Subcatchment EDA-1: EDA-1

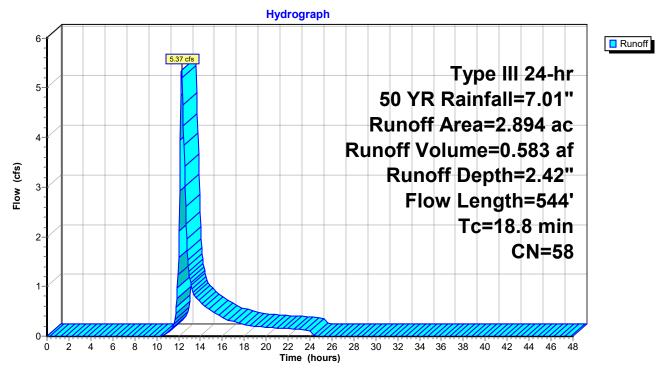

Runoff = 14.00 cfs @ 12.48 hrs, Volume= 1.883 af, Depth= 2.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 50 YR Rainfall=7.01"

_	Area	(ac) C	N Des	cription		
6.194 55 Woods, Good, HSG B						
_	2.	147 7	77 Woo	ods, Good,	HSG D	
	8.	341 6	61 Weig	ghted Aver	age	
	8.	341	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.3	100	0.0663	0.12		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.18"
	19.3	1,600	0.0764	1.38		Shallow Concentrated Flow, B-C
		•				Woodland Kv= 5.0 fps
	32.6	1 700	Total			

32.6 1,700 Total

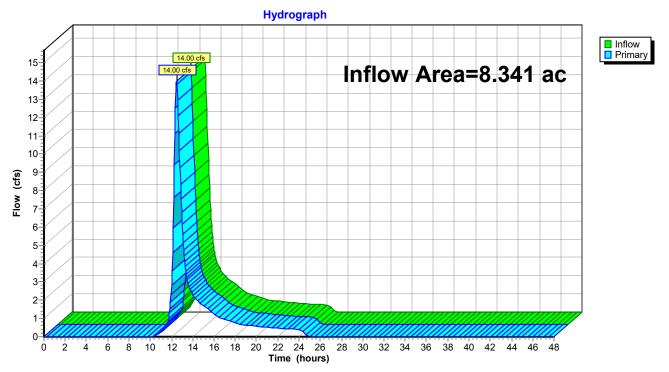
Subcatchment EDA-1: EDA-1


Summary for Subcatchment EDA-2: EDA-2

Runoff = 5.37 cfs @ 12.28 hrs, Volume= 0.583 af, Depth= 2.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 50 YR Rainfall=7.01"

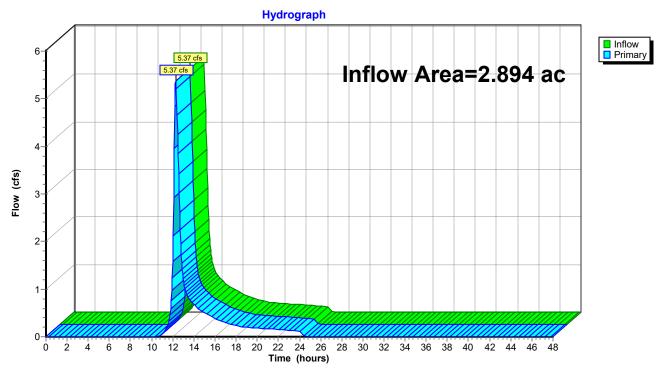
Area	(ac) C	N Desc	cription		
2.263 55 Woods, Good, HSG B					
0.	<u>631 7</u>	<u>'0 Woo</u>	ds, Good,	HSG C	
2.	894 5	68 Weig	ghted Aver	age	
2.	894	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.0	100	0.0588	0.12		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.18"
0.7	63	0.0903	1.50		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
4.1	381	0.0979	1.56		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
18.8	544	Total			


Subcatchment EDA-2: EDA-2

Summary for Link AP-1: AP-1

Inflow Are	a =	8.341 ac,	0.00% Impervious,	Inflow Depth = 2.71'	for 50 YR event
Inflow	=	14.00 cfs @	12.48 hrs, Volume	= 1.883 af	
Primary	=	14.00 cfs @	12.48 hrs, Volume	e= 1.883 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Link AP-1: AP-1

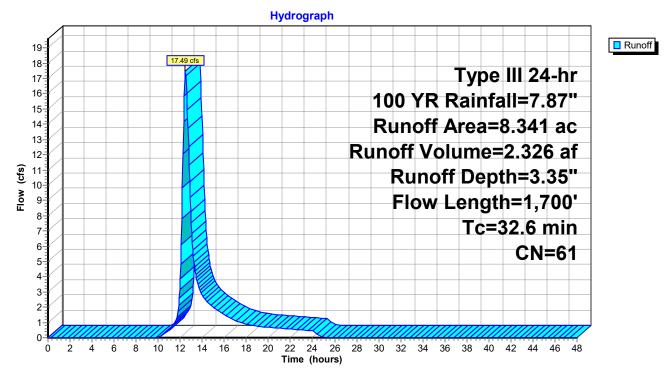
Summary for Link AP-2: AP-2

Inflow Area =	2.894 ac,	0.00% Impervious, Infle	ow Depth = 2.42 "	for 50 YR event
Inflow =	5.37 cfs @	12.28 hrs, Volume=	0.583 af	
Primary =	5.37 cfs @	12.28 hrs, Volume=	0.583 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Link AP-2: AP-2

CT599140_KillinglyHS - EX - Rev Prepared by Microsoft	0 Type III 24-hr 100 YR Rainfall=7.87" Printed 6/1/2021				
HydroCAD® 10.00-25 s/n 07402 © 2019 H	HydroCAD Software Solutions LLC Page 20				
Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method					
Subcatchment EDA-1: EDA-1	Runoff Area=8.341 ac 0.00% Impervious Runoff Depth=3.35" Flow Length=1,700' Tc=32.6 min CN=61 Runoff=17.49 cfs 2.326 af				
Subcatchment EDA-2: EDA-2	Runoff Area=2.894 ac 0.00% Impervious Runoff Depth=3.02" Flow Length=544' Tc=18.8 min CN=58 Runoff=6.85 cfs 0.728 af				
Link AP-1: AP-1	Inflow=17.49 cfs 2.326 af				
	Primary=17.49 cfs 2.326 af				
Link AP-2: AP-2	Inflow=6.85 cfs 0.728 af Primary=6.85 cfs 0.728 af				
Total Runoff Area = 11.2	235 ac Runoff Volume = 3.054 af Average Runoff Depth = 3.26" 100.00% Pervious = 11.235 ac 0.00% Impervious = 0.000 ac				

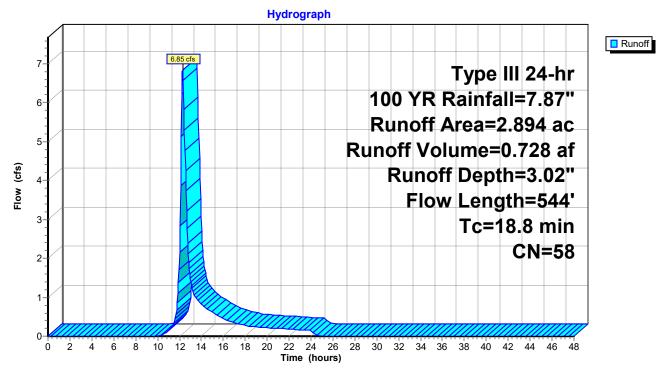

Summary for Subcatchment EDA-1: EDA-1

Runoff = 17.49 cfs @ 12.47 hrs, Volume= 2.326 af, Depth= 3.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100 YR Rainfall=7.87"

A	rea	(ac) C	N Des	cription		
	-			ods, Good,		
	2.	147 7	77 Woo	ods, Good,	HSG D	
	8.	341 6	61 Weig	ghted Aver	age	
	8.	341	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13	3.3	100	0.0663	0.12		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.18"
19	9.3	1,600	0.0764	1.38		Shallow Concentrated Flow, B-C
		·				Woodland Kv= 5.0 fps
32	2.6	1,700	Total			

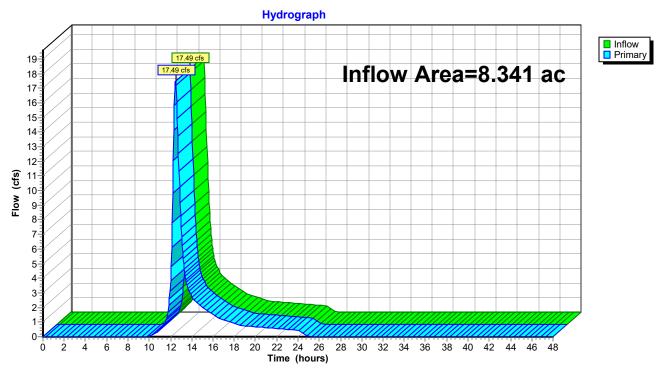
Subcatchment EDA-1: EDA-1


Summary for Subcatchment EDA-2: EDA-2

Runoff = 6.85 cfs @ 12.27 hrs, Volume= 0.728 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100 YR Rainfall=7.87"

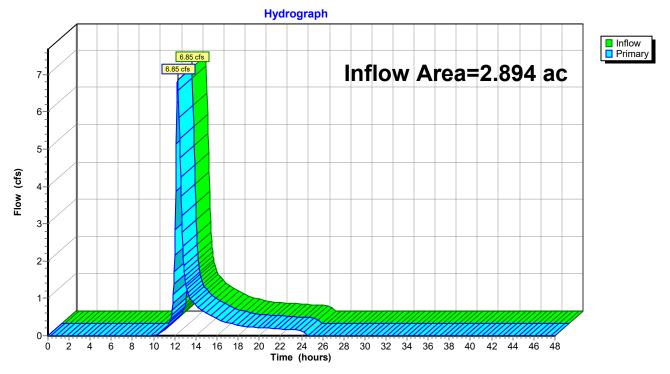
Area	(ac) C	N Desc	cription		
2.263 55 Woods, Good, HSG B					
0.	<u>631 7</u>	<u>'0 Woo</u>	ds, Good,	HSG C	
2.	894 5	68 Weig	ghted Aver	age	
2.	894	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.0	100	0.0588	0.12		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.18"
0.7	63	0.0903	1.50		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
4.1	381	0.0979	1.56		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
18.8	544	Total			


Subcatchment EDA-2: EDA-2

Summary for Link AP-1: AP-1

Inflow Are	a =	8.341 ac,	0.00% Impervious,	Inflow Depth = 3.	.35" for 100 YR event
Inflow	=	17.49 cfs @	12.47 hrs, Volume	= 2.326 af	
Primary	=	17.49 cfs @	12.47 hrs, Volume	= 2.326 af,	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



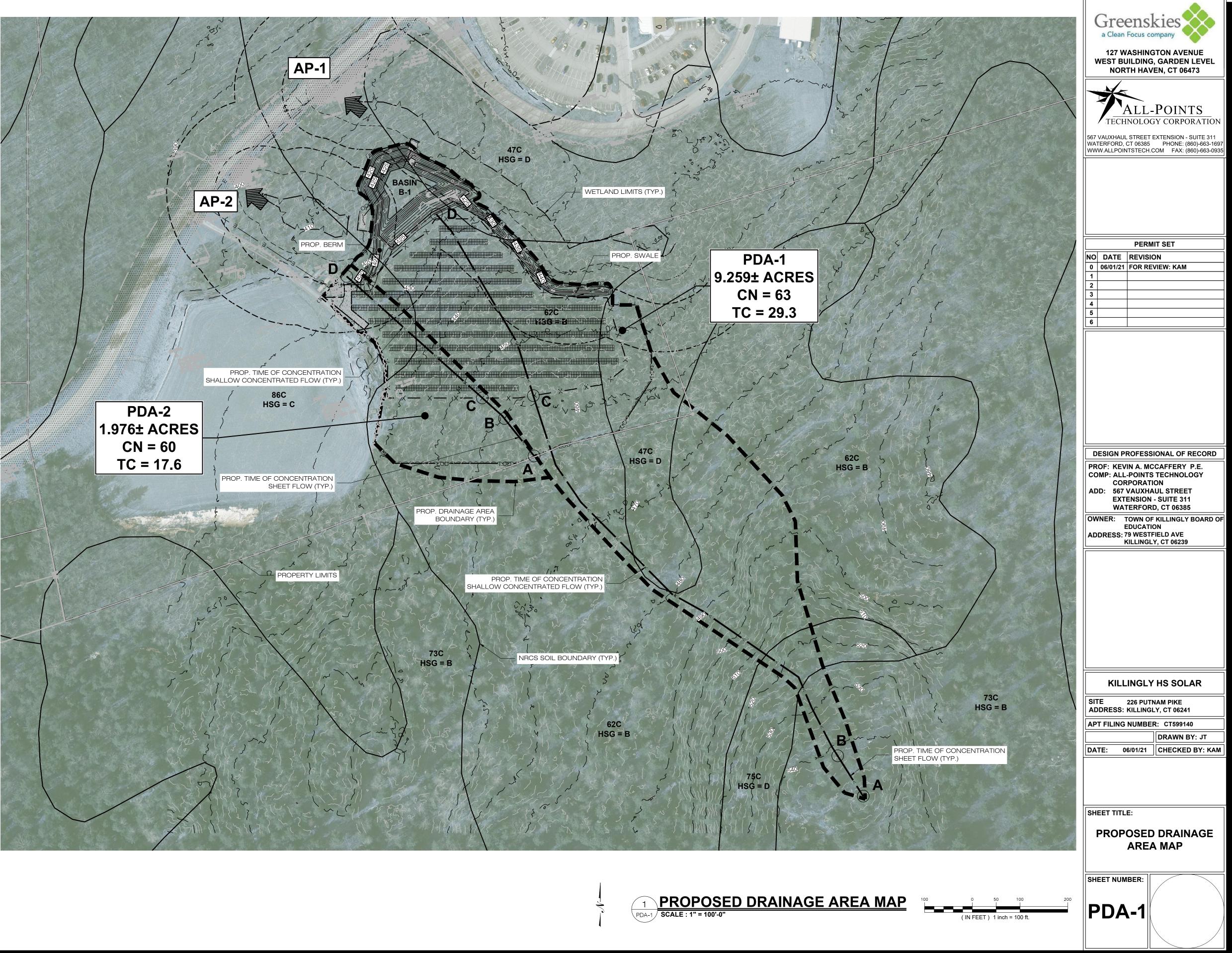
Link AP-1: AP-1

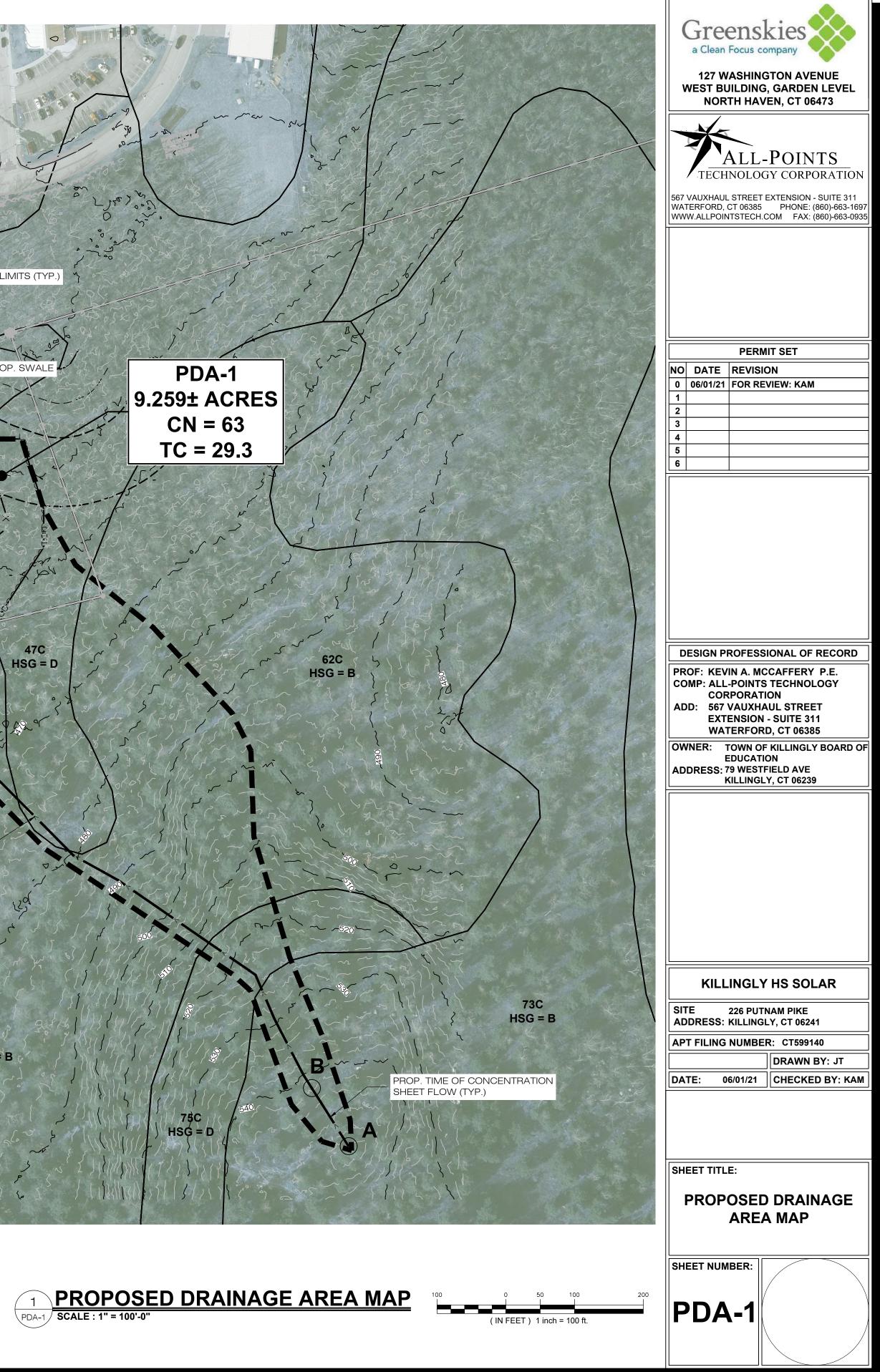
Summary for Link AP-2: AP-2

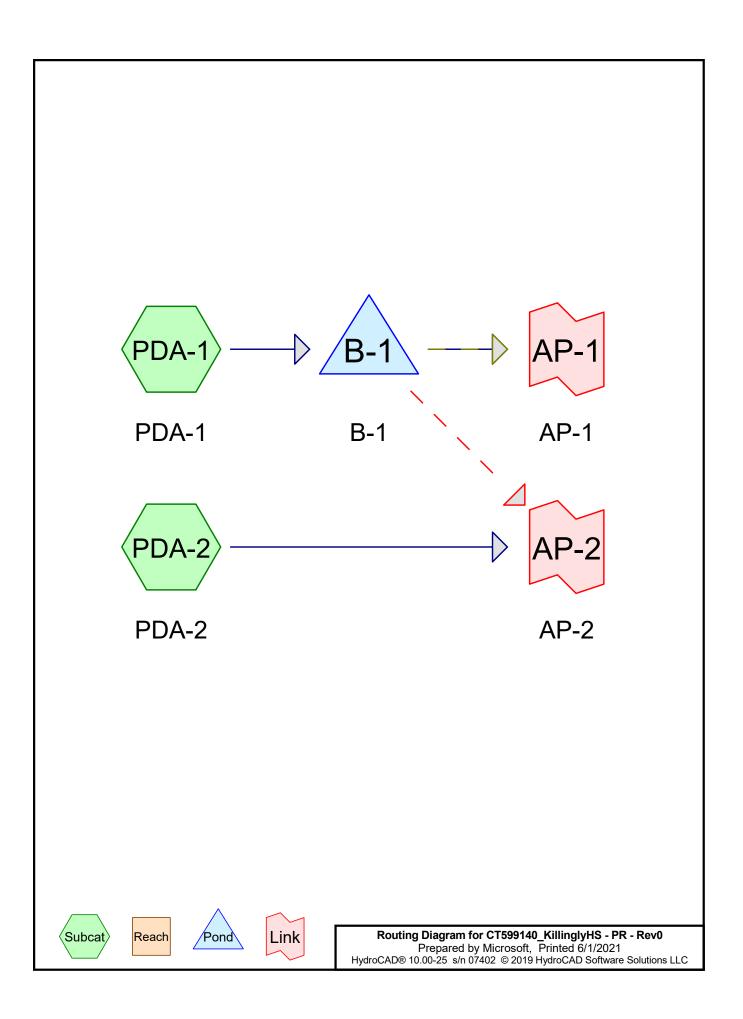
Inflow Area =	2.894 ac,	0.00% Impervious, Inflow [Depth = $3.02"$	for 100 YR event
Inflow =	6.85 cfs @	12.27 hrs, Volume=	0.728 af	
Primary =	6.85 cfs @	12.27 hrs, Volume=	0.728 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Link AP-2: AP-2


APPENDIX C: PROPOSED DRAINAGE AREA MAP (PDA-1) & Hydrologic Computation (HydroCAD)


PROPOSED DRAINAGE AREAS


TOTAL AREA (ACRES)	COMPOSITE CN	TC (MINS.)	
9.259	63	29.3	
1.976	60	17.6	
	9.259	9.259 63	

PROPOSED CONDITION PEAK FLOWS

ANALYSIS POINT	2-YEAR (CFS)	25-YEAR (CFS)	50-YEAR (CFS)	100-YEAR (CFS)
AP-1	0.64	3.61	9.07	15.08
AP-2	0.53	3.46	4.48	5.58

CT599140_KillinglyHS - PR - Rev0 Prepared by Microsoft HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.177	58	Meadow, non-grazed, HSG B (PDA-1, PDA-2)
0.202	71	Meadow, non-grazed, HSG C (PDA-1, PDA-2)
0.344	75	Meadow, non-grazed, HSG C (PDA-2)
0.350	78	Meadow, non-grazed, HSG D (PDA-1)
0.005	98	Unconnected pavement, HSG C (PDA-2)
0.366	98	Water Surface, HSG B (PDA-1)
0.102	98	Water Surface, HSG D (PDA-1)
4.914	55	Woods, Good, HSG B (PDA-1, PDA-2)
0.080	70	Woods, Good, HSG C (PDA-2)
1.695	77	Woods, Good, HSG D (PDA-1)
11.235	63	TOTAL AREA

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
8.457	HSG B	PDA-1, PDA-2
0.631	HSG C	PDA-1, PDA-2
2.147	HSG D	PDA-1
0.000	Other	
11.235		TOTAL AREA

CT599140_KillinglyHS - PR - Rev0 Prepared by Microsoft HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC

Printed 6/1/2021 Page 4

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchme Numbers
0.000	3.177	0.546	0.350	0.000	4.073	Meadow, non-grazed	PDA-1,
							PDA-2
0.000	0.000	0.005	0.000	0.000	0.005	Unconnected pavement	PDA-2
0.000	0.366	0.000	0.102	0.000	0.468	Water Surface	PDA-1
0.000	4.914	0.080	1.695	0.000	6.689	Woods, Good	PDA-1,
							PDA-2
0.000	8.457	0.631	2.147	0.000	11.235	TOTAL AREA	

Ground Covers (all nodes)

421.00

2 B-1

CT599140_KillinglyHS - PR - Rev0 Prepared by Microsoft HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC

419.00

0.0

0.0

4.0

			Pipe	e Lisung (5)			
Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	B-1	420.50	419.00	42.0	0.0357	0.013	6.0	0.0	0.0

68.0 0.0294 0.013

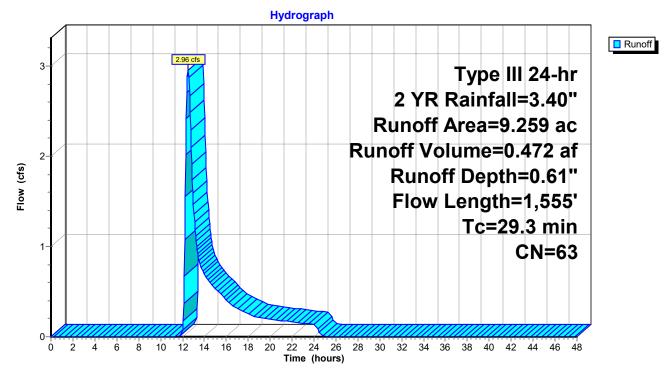
Pine Listing (all nodes)

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1: PDA-1	Runoff Area=9.259 ac 5.05% Impervious Runoff Depth=0.61" w Length=1,555' Tc=29.3 min CN=63 Runoff=2.96 cfs 0.472 af
Subcatchment PDA-2: PDA-2	Runoff Area=1.976 ac 0.25% Impervious Runoff Depth=0.49" low Length=544' Tc=17.6 min CN=60 Runoff=0.53 cfs 0.081 af
Pond B-1: B-1 Primary=0.64 cfs 0.418 af Secondary=0.19 cf	Peak Elev=421.49' Storage=6,166 cf Inflow=2.96 cfs 0.472 af s 0.050 af Tertiary=0.00 cfs 0.000 af Outflow=0.83 cfs 0.469 af
Link AP-1: AP-1	Inflow=0.64 cfs 0.418 af Primary=0.64 cfs 0.418 af

Link AP-2: AP-2

Inflow=0.53 cfs 0.131 af Primary=0.53 cfs 0.131 af


Total Runoff Area = 11.235 ac Runoff Volume = 0.552 af Average Runoff Depth = 0.59" 95.79% Pervious = 10.762 ac 4.21% Impervious = 0.473 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 2.96 cfs @ 12.51 hrs, Volume= 0.472 af, Depth= 0.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YR Rainfall=3.40"

_	Area	(ac)	CN	Desc	cription		
	3.	793	55	Woo	ds, Good,	HSG B	
	2.	806	58	Mea	dow, non-g	grazed, HS	G B
*	0.	366	98		er Surface		
	-	147	71			grazed, HS	GC
		695	77		ds, Good,		
	0.	350	78			grazed, HS	GD
	0.	102	98	Wate	er Surface	, HSG D	
	9.	259	63	Weig	ghted Aver	age	
	8.	791		94.9	5% Pervio	us Area	
	0.	468		5.05	% Impervi	ous Area	
	_						
	Tc	Lengt		Slope	Velocity	Capacity	Description
	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
	13.3	10	0.0	.0663	0.12		Sheet Flow, A-B
							Woods: Light underbrush n= 0.400 P2= 3.18"
	12.3	1,020	0.	0764	1.38		Shallow Concentrated Flow, B-C
							Woodland Kv= 5.0 fps
	3.7	43	50.	0764	1.93		Shallow Concentrated Flow, C-D
							Short Grass Pasture Kv= 7.0 fps
	29.3	1,55	5 To	otal			


Subcatchment PDA-1: PDA-1

Summary for Subcatchment PDA-2: PDA-2

Runoff = 0.53 cfs @ 12.35 hrs, Volume= 0.081 af, Depth= 0.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YR Rainfall=3.40"

1.121 55 Woods, Good, HSG B 0.371 58 Meadow, non-grazed, HSG B 0.080 70 Woods, Good, HSG C * 0.344 75 Meadow, non-grazed, HSG C 0.055 71 Meadow, non-grazed, HSG C * 0.005 98 Unconnected pavement, HSG C * 0.005 98 Unconnected pavement, HSG C 1.976 60 Weighted Average 1.971 99.75% Pervious Area 0.005 0.005 0.25% Impervious Area 0.005 0.005 100.00% Unconnected Description (min) (feet) (ft/ft) (ft/sec) (cfs) 14.0 100 0.0588 0.12 Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.18" Noods: Light underbrush n= 0.400 P2= 3.18" 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D Woodland Kv= 5.0 fps	_	Area	(ac)	CN	l Desc	cription		
0.080 70 Woods, Good, HSG C * 0.344 75 Meadow, non-grazed, HSG C 0.055 71 Meadow, non-grazed, HSG C * 0.005 98 Unconnected pavement, HSG C * 1.976 60 Weighted Average 1.971 99.75% Pervious Area 0.005 0.25% Impervious Area 0.005 0.25% Impervious Area 0.005 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 14.0 100 0.0588 0.12 Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.18" 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps 2.9 381 0.0979 2.19		1.	121	55	i Woo	ds, Good,	HSG B	
* 0.344 75 Meadow, non-grazed, HSG C 0.055 71 Meadow, non-grazed, HSG C * 0.005 98 Unconnected pavement, HSG C 1.976 60 Weighted Average 1.971 99.75% Pervious Area 0.005 0.25% Impervious Area 0.005 100.00% Unconnected Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ff/sec) (cfs) 14.0 100 0.0588 0.12 Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.18" 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps 2.9 381 0.0979 2.19		0.	371	58				G B
0.055 71 Meadow, non-grazed, HSG C * 0.005 98 Unconnected pavement, HSG C 1.976 60 Weighted Average 1.971 99.75% Pervious Area 0.005 0.25% Impervious Area 0.005 0.25% Impervious Area 0.005 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 14.0 100 0.0588 0.12 Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.18" 0.7 63 0.0903 1.50 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D Flow, C-D		0.	080	70				
* 0.005 98 Unconnected pavement, HSG C 1.976 60 Weighted Average 1.971 99.75% Pervious Area 0.005 0.25% Impervious Area 0.005 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 14.0 100 0.093 1.50 Sheet Flow, A-B Woods: Light underbrush n= 0.400 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D	*			75				
1.976 60 Weighted Average 1.971 99.75% Pervious Area 0.005 0.25% Impervious Area 0.005 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 14.0 100 0.07 63 0.0903 1.50 Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D				71		· ·		
1.971 99.75% Pervious Area 0.005 0.25% Impervious Area 0.005 100.00% Unconnected Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 14.0 100 0.0588 0.12 Sheet Flow, A-B 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C 0.7 63 0.0979 2.19 Shallow Concentrated Flow, C-D	*	0.	005	98	B Unco	onnected p	avement, l	HSG C
0.005 0.25% Impervious Area 0.005 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Description 14.0 100 0.0588 0.12 Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.18" 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D		1.	976	60				
0.005 100.00% Unconnected Tc Length Slope Velocity Capacity (cfs) Description (min) (feet) (ft/ft) (ft/sec) (cfs) Description 14.0 100 0.0588 0.12 Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.18" 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C Woodland Woodland 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D			-			• • • • • • • • • •		
TcLength (min)Slope (feet)Velocity (ft/ft)Capacity (cfs)Description14.01000.05880.12Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.18"0.7630.09031.50Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps2.93810.09792.19Shallow Concentrated Flow, C-D		0.	005					
(min) (feet) (ft/ft) (ft/sec) (cfs) 14.0 100 0.0588 0.12 Sheet Flow, A-B 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C 0.7 381 0.0979 2.19 Shallow Concentrated Flow, C-D		0.	005		100.0	00% Unco	nnected	
(min) (feet) (ft/ft) (ft/sec) (cfs) 14.0 100 0.0588 0.12 Sheet Flow, A-B 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D		-					0	
14.0 100 0.0588 0.12 Sheet Flow, A-B 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D			-					Description
0.7 63 0.0903 1.50 Woods: Light underbrush n= 0.400 P2= 3.18" 0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D				,			(cts)	
0.7 63 0.0903 1.50 Shallow Concentrated Flow, B-C 2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D		14.0	10	0	0.0588	0.12		
2.93810.09792.19WoodlandKv= 5.0 fpsShallow Concentrated Flow, C-D			_					
2.9 381 0.0979 2.19 Shallow Concentrated Flow, C-D		0.7	6	53	0.0903	1.50		
•								
		2.9	38	51	0.0979	2.19		•
								Short Grass Pasture Kv= 7.0 fps
17.6 544 Total		17.6	54	4	Total			

Subcatchment PDA-2: PDA-2

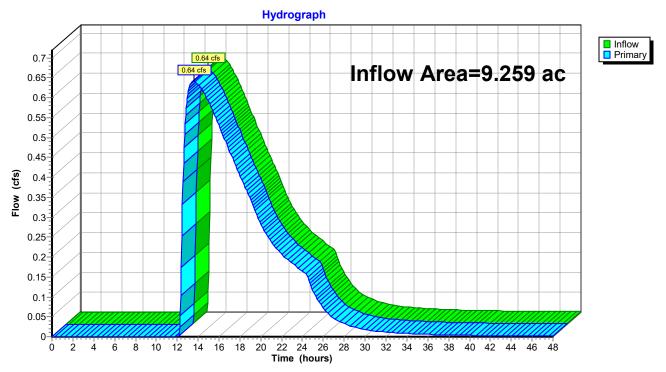
Summary for Pond B-1: B-1

Inflow Ai Inflow Outflow Primary Seconda Tertiary	= 2 = 6 ary = 6	2.96 cfs @ 12 0.83 cfs @ 13 0.64 cfs @ 13 0.19 cfs @ 13	05% Impervious, 2.51 hrs, Volume 3.56 hrs, Volume 3.56 hrs, Volume 3.56 hrs, Volume 0.00 hrs, Volume	e= () e= () e= () e= ()).472 af		vent ag= 62.8 min
Peak Ele	ev= 421.49'	@ 13.56 hrs	Time Span= 0.00 Surf.Area= 6,788	8 sf Storag	ge= 6,166 cf		
Center-c	of-Mass det.	time= 135.1 r	nin calculated for nin (1,054.7 - 91	9.6)	9% of inflow))	
Volume			rage Storage D	•			
#1	420.50	56,86	58 cf Custom S	stage Data ((Irregular) Lis	sted below (Recalc)
Elevatio (fee				c.Store c-feet)	Cum.Store (cubic-feet)		t.Area (sq-ft)
420.5	-		337.7	0	0		5,695
424.0				27,107	27,107		3,138
426.0				29,761	56,868		6,695
Device	Routing	Invert	Outlet Devices				
#1	Primary	420.50'	6.0" Round Cu L= 42.0' CPP, Inlet / Outlet Inv n= 0.013 Corru	projecting, vert= 420.50)'/419.00' \$	S= 0.0357 '/'	
#2	Secondary	421.00'	4.0" Round Cu L= 68.0' CPP, Inlet / Outlet Inv n= 0.013 Corru	u lvert projecting, vert= 421.00	no headwall,)' / 419.00' \$	Ke= 0.900 S= 0.0294 '/'	Cc= 0.900
#3	Tertiary	424.30'	15.0' long x 14 Head (feet) 0.2 Coef. (English)	1.2' breadth 20 0.40 0.6	Broad-Cres 0 0.80 1.00	ted Rectang 1.20 1.40	jular Weir 1.60

Primary OutFlow Max=0.64 cfs @ 13.56 hrs HW=421.49' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.64 cfs @ 3.27 fps)

Secondary OutFlow Max=0.19 cfs @ 13.56 hrs HW=421.49' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.19 cfs @ 2.16 fps)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=420.50' TW=0.00' (Dynamic Tailwater) **3=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

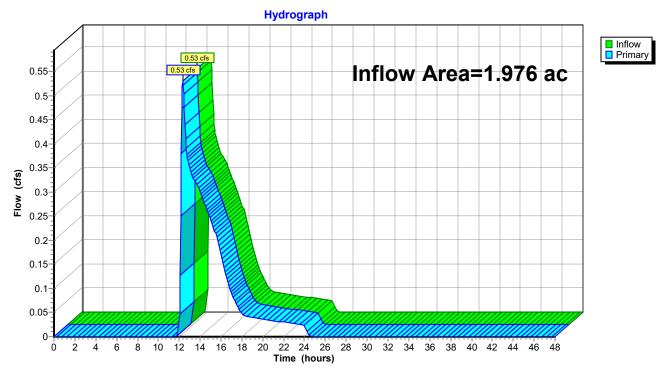

Hydrograph Inflow 2.96 cfs Outflow Inflow Area=9.259 ac Primary
 Secondary
 Tertiary Peak Elev=421.49' 3-Storage=6,166 cf 2 Flow (cfs) 0.83 cfs 0.64 cfs 1 0.19 cfs 0.0 0-444 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours) Ó

Pond B-1: B-1

Summary for Link AP-1: AP-1

Inflow Area	a =	9.259 ac,	5.05% Impervious, Inf	low Depth > 0.54"	for 2 YR event
Inflow	=	0.64 cfs @	13.56 hrs, Volume=	0.418 af	
Primary	=	0.64 cfs @	13.56 hrs, Volume=	0.418 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow Area =	1.976 ac,	0.25% Impervious, Infl	ow Depth = 0.79"	for 2 YR event
Inflow =	0.53 cfs @	12.35 hrs, Volume=	0.131 af	
Primary =	0.53 cfs @	12.35 hrs, Volume=	0.131 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

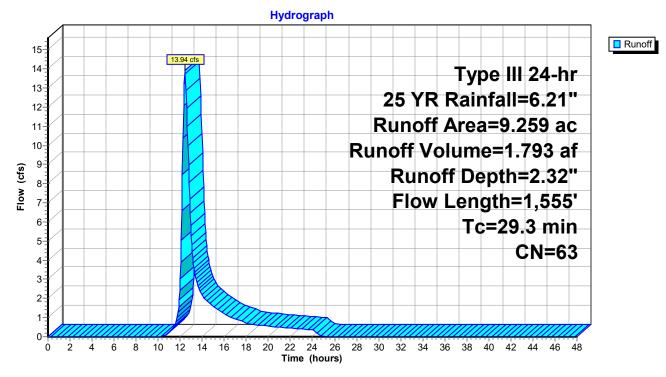
Link AP-2: AP-2

CT599140_KillinglyHS - PR - Rev0	Type III 24-hr 25 YR Rainfall=6.21"
Prepared by Microsoft	Printed 6/1/2021
HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solution	ons LLC Page 15

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1: PDA-1	Runoff Area=9.259 ac 5.05% Impervious Runoff Depth=2.32" Flow Length=1,555' Tc=29.3 min CN=63 Runoff=13.94 cfs 1.793 af
Subcatchment PDA-2: PDA-2	Runoff Area=1.976 ac 0.25% Impervious Runoff Depth=2.06" Flow Length=544' Tc=17.6 min CN=60 Runoff=3.19 cfs 0.339 af
Pond B-1: B-1 Primary=1.43 cfs 1.263 af Secondary=0	Peak Elev=424.44' Storage=31,981 cf Inflow=13.94 cfs 1.793 af 0.47 cfs 0.395 af Tertiary=2.18 cfs 0.131 af Outflow=4.08 cfs 1.790 af
Link AP-1: AP-1	Inflow=3.61 cfs 1.394 af Primary=3.61 cfs 1.394 af
Link AP-2: AP-2	Inflow=3.46 cfs 0.735 af

Inflow=3.46 cfs 0.735 af Primary=3.46 cfs 0.735 af

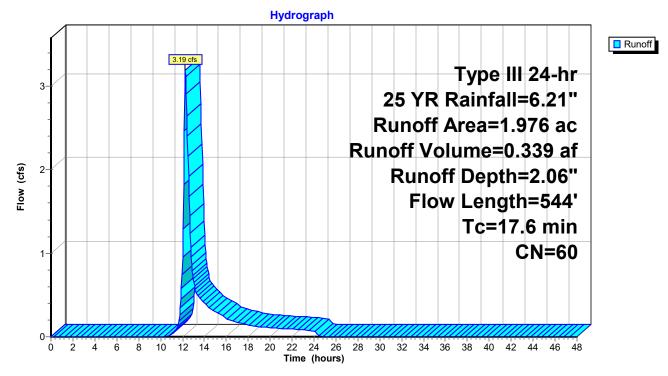

Total Runoff Area = 11.235 acRunoff Volume = 2.133 afAverage Runoff Depth = 2.28"95.79% Pervious = 10.762 ac4.21% Impervious = 0.473 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 13.94 cfs @ 12.43 hrs, Volume= 1.793 af, Depth= 2.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25 YR Rainfall=6.21"

_	Area	(ac)	CN	Desc	cription		
	3.	793	55	Woo	ds, Good,	HSG B	
	2.	806	58	Mea	dow, non-g	grazed, HS	G B
*		366	98		er Surface	,	
		147	71			grazed, HS	GC
		695	77		ds, Good,		
	0.	350	78			grazed, HS	G D
	0.	102	98	Wate	er Surface	, HSG D	
	9.	259	63	Weig	ghted Aver	age	
	8.	791		94.9	5% Pervio	us Area	
	0.	468		5.05	% Impervi	ous Area	
	_						
	Tc	Lengt		Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.3	100) 0.	0663	0.12		Sheet Flow, A-B
							Woods: Light underbrush n= 0.400 P2= 3.18"
	12.3	1,020	0.	0764	1.38		Shallow Concentrated Flow, B-C
							Woodland Kv= 5.0 fps
	3.7	43	50.	0764	1.93		Shallow Concentrated Flow, C-D
_							Short Grass Pasture Kv= 7.0 fps
	29.3	1,55	5 To	otal			


Subcatchment PDA-1: PDA-1

Summary for Subcatchment PDA-2: PDA-2

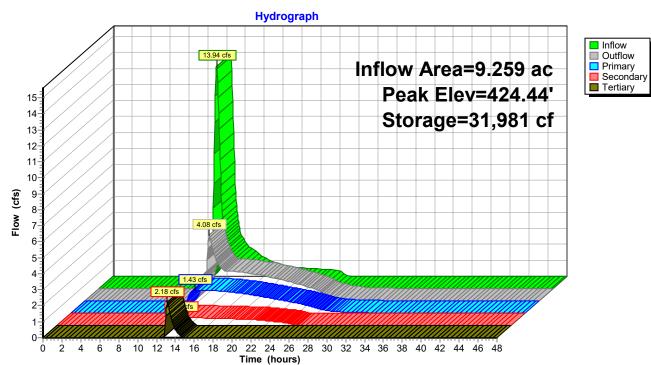
Runoff = 3.19 cfs @ 12.26 hrs, Volume= 0.339 af, Depth= 2.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25 YR Rainfall=6.21"

_	Area	(ac)	CN	Desc	cription				
	1.	121	55	5 Woo	Woods, Good, HSG B				
		371	58		· ·	grazed, HS	G B		
		080	70		ds, Good,				
*		344	75			grazed, HS			
		055	71			grazed, HS			
*	0.	005	98			avement, l	HSG C		
		976	60		ghted Aver	•			
		971			5% Pervio				
		005			% Impervi				
	0.	005		100.0	00% Unco	nnected			
	Тс	Leng	łh	Slope	Velocity	Capacity	Description		
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description		
	14.0	10	_/	0.0588	0.12	(0.0)	Sheet Flow, A-B		
	14.0		.0	0.0000	0.12		Woods: Light underbrush n= 0.400 P2= 3.18"		
	0.7	6	63	0.0903	1.50		Shallow Concentrated Flow, B-C		
	-	-	-				Woodland Kv= 5.0 fps		
	2.9	38	31	0.0979	2.19		Shallow Concentrated Flow, C-D		
							Short Grass Pasture Kv= 7.0 fps		
	17.6	54	4	Total					

Subcatchment PDA-2: PDA-2

Summary for Pond B-1: B-1

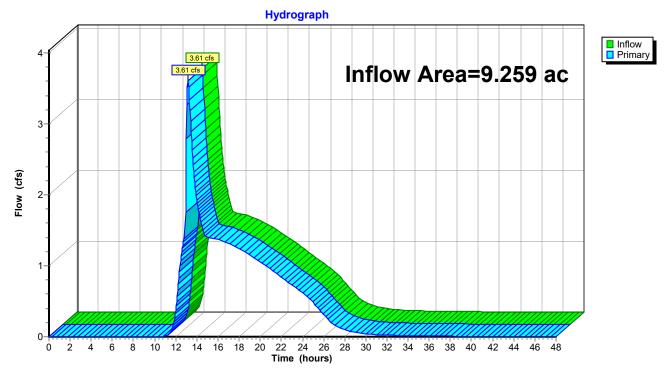

Inflow Area = Inflow = Outflow = Primary = Secondary = Tertiary =	4.08 cfs @ 1.43 cfs @	12.43 hi 13.16 hi 13.16 hi 13.16 hi	npervious, Inflow Do rs, Volume= rs, Volume= rs, Volume= rs, Volume= rs, Volume=	1.793 af	25 YR event 71%, Lag= 43.6 min	
			Span= 0.00-48.00 hrs			
Peak Elev= 424	.44' @ 13.16 h	rs Surf.A	rea= 11,984 sf Sto	orage= 31,981 cf		
Center-of-Mass	Plug-Flow detention time= 197.4 min calculated for 1.790 af (100% of inflow) Center-of-Mass det. time= 196.1 min (1,070.9 - 874.7)					
		Storage	Storage Description			
#1 420	0.50' 56	5,868 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
420.50	5,695	337.7	0	0	5,695	
424.00	9,995	453.8	27,107	27,107	13,138	
426.00	20,376	613.0	29,761	56,868	26,695	
Device Routing Invert Outlet Devices						

e Routing	Invert	Outlet Devices
Primary	420.50'	6.0" Round Culvert
		L= 42.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 420.50' / 419.00' S= 0.0357 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
Secondary	421.00'	4.0" Round Culvert
•		L= 68.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 421.00' / 419.00' S= 0.0294 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.09 sf
Tertiary	424.30'	15.0' long x 14.2' breadth Broad-Crested Rectangular Weir
-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
		Coef. (English) 2.65 2.68 2.70 2.65 2.64 2.65 2.64 2.63
	Primary Secondary	Primary 420.50' Secondary 421.00'

Primary OutFlow Max=1.43 cfs @ 13.16 hrs HW=424.44' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.43 cfs @ 7.31 fps)

Secondary OutFlow Max=0.47 cfs @ 13.16 hrs HW=424.44' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.47 cfs @ 5.44 fps)

Tertiary OutFlow Max=2.17 cfs @ 13.16 hrs HW=424.44' TW=0.00' (Dynamic Tailwater) **3=Broad-Crested Rectangular Weir** (Weir Controls 2.17 cfs @ 1.00 fps)

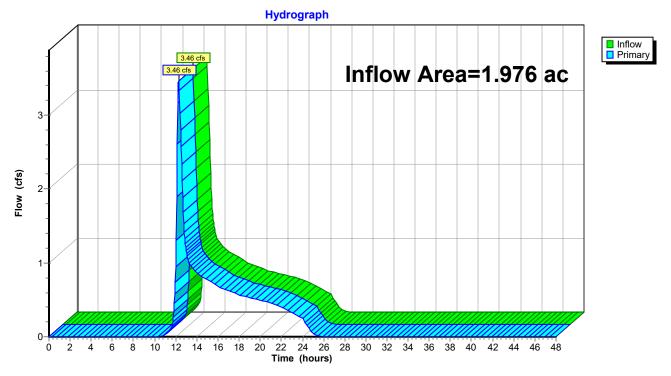


Pond B-1: B-1

Summary for Link AP-1: AP-1

Inflow Area	a =	9.259 ac,	5.05% Impervious,	Inflow Depth > 1.81	" for 25 YR event
Inflow	=	3.61 cfs @	13.16 hrs, Volume	= 1.394 af	
Primary	=	3.61 cfs @	13.16 hrs, Volume	= 1.394 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow Area =	1.976 ac,	0.25% Impervious, Inflow I	Depth = 4.46"	for 25 YR event
Inflow =	3.46 cfs @	12.27 hrs, Volume=	0.735 af	
Primary =	3.46 cfs @	12.27 hrs, Volume=	0.735 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

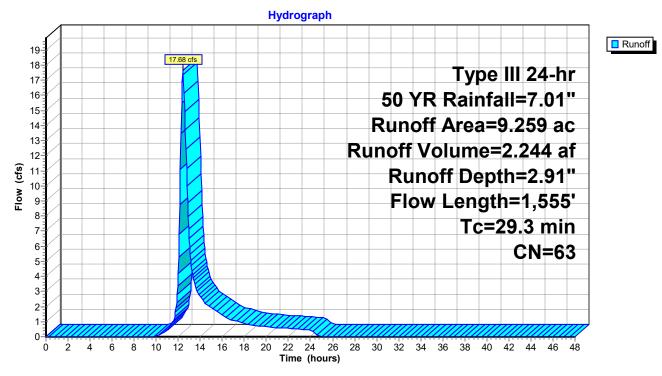
Link AP-2: AP-2

CT599140_KillinglyHS - PR - Rev0	Type III 24-hr 50 YR Rainfall=7.01"
Prepared by Microsoft	Printed 6/1/2021
HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Soluti	tions LLC Page 24

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1: PDA-1	Runoff Area=9.259 ac 5.05% Impervious Runoff Depth=2.91" Flow Length=1,555' Tc=29.3 min CN=63 Runoff=17.68 cfs 2.244 af
Subcatchment PDA-2: PDA-2	Runoff Area=1.976 ac 0.25% Impervious Runoff Depth=2.61" Flow Length=544' Tc=17.6 min CN=60 Runoff=4.13 cfs 0.430 af
Pond B-1: B-1 Primary=1.47 cfs 1.368 af Secondary=(Peak Elev=424.63' Storage=34,296 cf Inflow=17.68 cfs 2.244 af 0.48 cfs 0.430 af Tertiary=7.60 cfs 0.442 af Outflow=9.56 cfs 2.240 af
Link AP-1: AP-1	Inflow=9.07 cfs 1.810 af Primary=9.07 cfs 1.810 af
Link AP-2: AP-2	Inflow=4.48 cfs 0.860 af

Inflow=4.48 cfs 0.860 af Primary=4.48 cfs 0.860 af

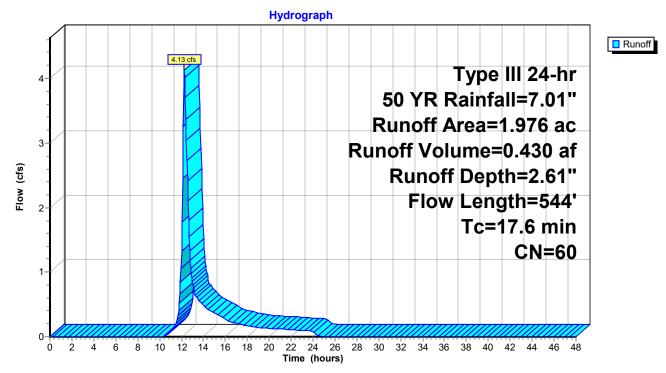

Total Runoff Area = 11.235 acRunoff Volume = 2.674 afAverage Runoff Depth = 2.86"95.79% Pervious = 10.762 ac4.21% Impervious = 0.473 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 17.68 cfs @ 12.43 hrs, Volume= 2.244 af, Depth= 2.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 50 YR Rainfall=7.01"

	Area	(ac)	CN	Desc	cription		
	3.	793	55	Woo	ds, Good,	HSG B	
	2.	806	58	Mea	dow, non-g	grazed, HS	G B
*		366	98		er Surface		
		147	71			grazed, HS	GC
		695	77		ds, Good,		
	0.	350	78			grazed, HS	G D
_	0.	102	98	Wate	er Surface	, HSG D	
	9.	259	63	Weig	ghted Aver	age	
	8.791 94.95% Pervious Area					us Area	
	0.468 5.05% Impervious Area					ous Area	
	_						
	Тс	Lengt		Slope	Velocity	Capacity	Description
	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
	13.3	10	0 0	.0663	0.12		Sheet Flow, A-B
							Woods: Light underbrush n= 0.400 P2= 3.18"
	12.3	1,02	0 0	.0764	1.38		Shallow Concentrated Flow, B-C
							Woodland Kv= 5.0 fps
	3.7	43	5 0	.0764	1.93		Shallow Concentrated Flow, C-D
							Short Grass Pasture Kv= 7.0 fps
	29.3	1,55	5 T	otal			


Subcatchment PDA-1: PDA-1

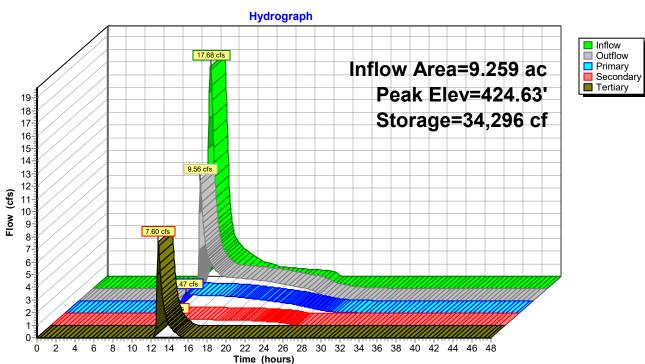
Summary for Subcatchment PDA-2: PDA-2

Runoff = 4.13 cfs @ 12.26 hrs, Volume= 0.430 af, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 50 YR Rainfall=7.01"

_	Area	(ac)	CN	Desc	cription							
	1.	121	55	Woo	Woods, Good, HSG B							
	0.	371	58		Meadow, non-grazed, HSG B							
	-	080	70		ds, Good,							
*		344	75			grazed, HS						
		055	71			grazed, HS						
*	0.	005	98	Unco	onnected p	avement, l	HSG C					
		976	60		ghted Aver	•						
		971			5% Pervio							
		005			% Impervi							
	0.	005		100.0	00% Unco	nnected						
	Тс	Lengt	'n	Slope	Velocity	Capacity	Description					
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description					
	14.0	10	/	0.0588	0.12	(010)	Sheet Flow, A-B					
	14.0	10	0	0.0000	0.12		Woods: Light underbrush n= 0.400 P2= 3.18"					
	0.7	6	3	0.0903	1.50		Shallow Concentrated Flow, B-C					
		· · ·	-				Woodland Kv= 5.0 fps					
	2.9	38	1	0.0979	2.19		Shallow Concentrated Flow, C-D					
							Short Grass Pasture Kv= 7.0 fps					
-	17.6	54	4	Total								

Subcatchment PDA-2: PDA-2

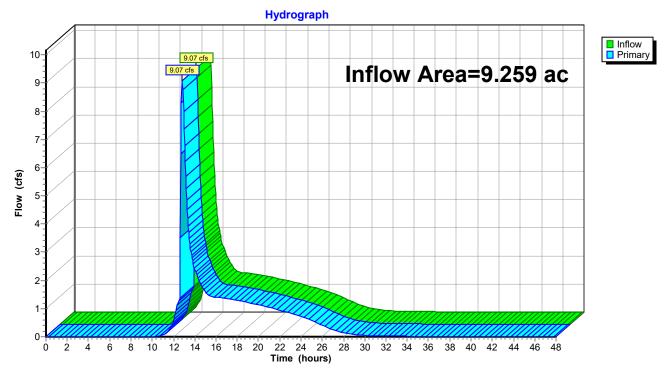

Summary for Pond B-1: B-1

Inflow A Inflow Outflow Primary Seconda Tertiary	= · · = ary =	17.68 cfs @ 1 9.56 cfs @ 1 1.47 cfs @ 1 0.48 cfs @ 1	2.43 hrs, 2.82 hrs, 2.82 hrs, 2.82 hrs, 2.82 hrs,	pervious, Inflow E Volume= Volume= Volume= Volume= Volume=	Depth = 2.91" for 2.244 af 2.240 af, Atten= 4 1.368 af 0.430 af 0.442 af	50 YR event 46%, Lag= 23.8 min			
				an= 0.00-48.00 h a= 12,872 sf St	rs, dt= 0.05 hrs orage= 34,296 cf				
Center-o	Plug-Flow detention time= 174.6 min calculated for 2.238 af (100% of inflow) Center-of-Mass det. time= 174.5 min(1,042.6 - 868.0)								
Volume #1	Inve 420.5			torage Descriptio		holow (Pocolo)			
#1	420.0	5 50,8		usion Slage Da	ta (Irregular) Listed				
Elevatio	on s	Surf.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
420.8	50	5,695	337.7	0	0	5,695			
424.0	00	9,995	453.8	27,107	27,107	13,138			
426.00		20,376	613.0	29,761	56,868	26,695			
Device	Routing	Invert	Outlet	Devices					
#1	Primary	420.50'	6.0" R	ound Culvert					
					ng, no headwall, Ke				
						.0357 '/' Cc= 0.900			
	- ·				E, smooth interior, F	Flow Area= 0.20 sf			
#2	Secondar	y 421.00'		ound Culvert		0.000			
					ng, no headwall, Ke	= 0.900 .0294 '/' Cc= 0.900			
				-	E, smooth interior, F				
#3	Tertiary	424.30'		•	dth Broad-Crested I				
	· • · · · · · · · · · ·				0.60 0.80 1.00 1.2				
					68 2.70 2.65 2.64				

Primary OutFlow Max=1.47 cfs @ 12.82 hrs HW=424.63' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.47 cfs @ 7.49 fps)

Secondary OutFlow Max=0.48 cfs @ 12.82 hrs HW=424.63' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.48 cfs @ 5.53 fps)

Tertiary OutFlow Max=7.51 cfs @ 12.82 hrs HW=424.63' TW=0.00' (Dynamic Tailwater) **3=Broad-Crested Rectangular Weir** (Weir Controls 7.51 cfs @ 1.53 fps)

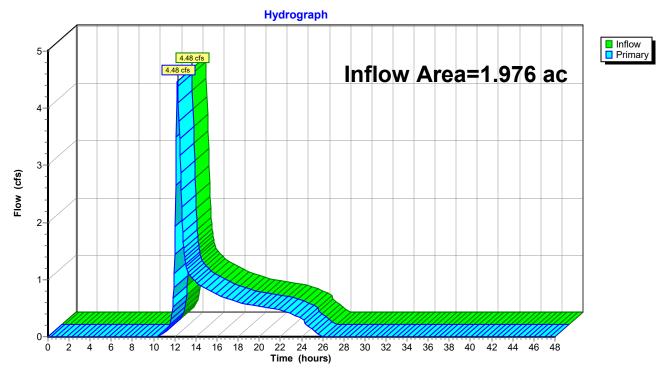


Pond B-1: B-1

Summary for Link AP-1: AP-1

Inflow Area =	9.259 ac,	5.05% Impervious, I	nflow Depth > 2.35"	for 50 YR event
Inflow =	9.07 cfs @	12.82 hrs, Volume=	1.810 af	
Primary =	9.07 cfs @	12.82 hrs, Volume=	1.810 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow Area =	1.976 ac,	0.25% Impervious,	Inflow Depth = 5.22"	for 50 YR event
Inflow =	4.48 cfs @	12.26 hrs, Volume	= 0.860 af	
Primary =	4.48 cfs @	12.26 hrs, Volume	= 0.860 af, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

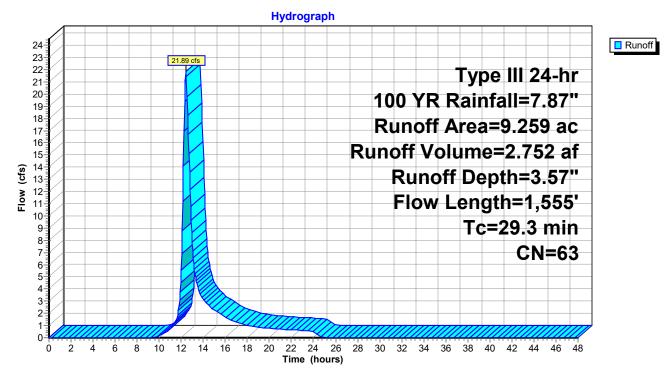
Link AP-2: AP-2

CT599140_KillinglyHS - PR - Rev0	Type III 24-hr	100 YR Rainfall=7.87"
Prepared by Microsoft		Printed 6/1/2021
HydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solution	ons LLC	Page 33

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment PDA-1: PDA-1	Runoff Area=9.259 ac 5.05% Impervious Runoff Depth=3.57" Flow Length=1,555' Tc=29.3 min CN=63 Runoff=21.89 cfs 2.752 af
Subcatchment PDA-2: PDA-2	Runoff Area=1.976 ac 0.25% Impervious Runoff Depth=3.24" Flow Length=544' Tc=17.6 min CN=60 Runoff=5.19 cfs 0.533 af
Pond B-1: B-1 Primary=1.50 cfs 1.469 af Secondary=0.4	Peak Elev=424.78' Storage=36,331 cf Inflow=21.89 cfs 2.752 af 49 cfs 0.462 af Tertiary=13.58 cfs 0.817 af Outflow=15.57 cfs 2.748 af
Link AP-1: AP-1	Inflow=15.08 cfs 2.286 af Primary=15.08 cfs 2.286 af
Link AP-2: AP-2	Inflow=5.58 cfs_0.995 af

Inflow=5.58 cfs 0.995 af Primary=5.58 cfs 0.995 af

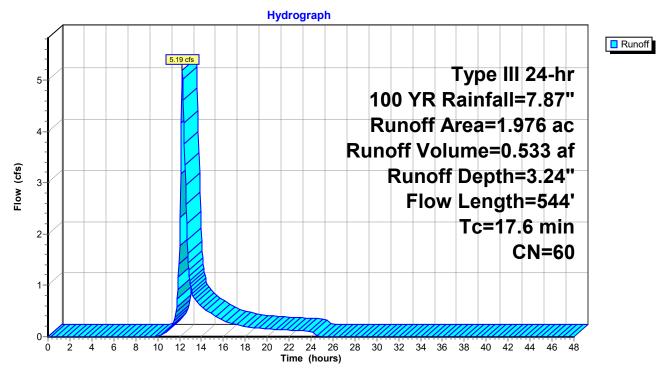

Total Runoff Area = 11.235 acRunoff Volume = 3.285 afAverage Runoff Depth = 3.51"95.79% Pervious = 10.762 ac4.21% Impervious = 0.473 ac

Summary for Subcatchment PDA-1: PDA-1

Runoff = 21.89 cfs @ 12.42 hrs, Volume= 2.752 af, Depth= 3.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100 YR Rainfall=7.87"

	Area	(ac)	CN	Desc	cription		
	3.	793	55	Woo	ds, Good,	HSG B	
	2.	806	58	Mea	dow, non-	grazed, HS	G B
*	0.	366	98		er Surface	,	
	0.	147	71		· · ·	grazed, HS	GC
		695	77		ds, Good,		
	0.	350	78			grazed, HS	G D
_	0.	102	98	Wate	er Surface	, HSG D	
	9.	259	63	Weig	ghted Aver	age	
	8.	791		94.9	5% Pervio	us Area	
	0.	468		5.05	% Impervi	ous Area	
	Tc	Lengt		Slope	Velocity	Capacity	Description
	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
	13.3	100	0.0	.0663	0.12		Sheet Flow, A-B
							Woods: Light underbrush n= 0.400 P2= 3.18"
	12.3	1,020	0.	0764	1.38		Shallow Concentrated Flow, B-C
							Woodland Kv= 5.0 fps
	3.7	43	50.	0764	1.93		Shallow Concentrated Flow, C-D
							Short Grass Pasture Kv= 7.0 fps
	29.3	1,55	5 To	otal			


Subcatchment PDA-1: PDA-1

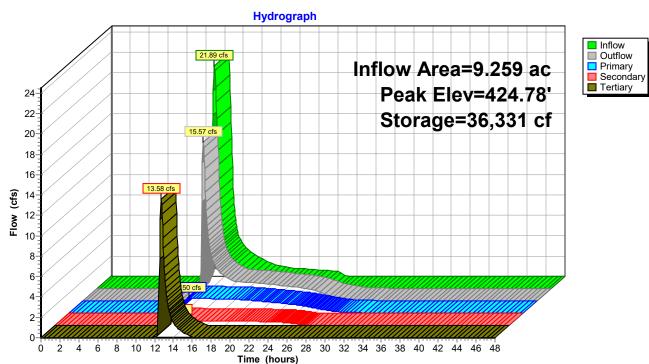
Summary for Subcatchment PDA-2: PDA-2

Runoff = 5.19 cfs @ 12.26 hrs, Volume= 0.533 af, Depth= 3.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100 YR Rainfall=7.87"

_	Area	(ac)	CN	Desc	cription		
	1.	121	55	Woo	ds, Good,	HSG B	
	0.	371	58	Mea	dow, non-g	grazed, HS	G B
		080	70		ds, Good,		
*		344	75			grazed, HS	
		055	71			grazed, HS	
*	0.	005	98			pavement, l	HSG C
		976	60		ghted Aver		
		971			5% Pervio		
		005			% Impervi		
	0.	005		100.0	00% Unco	nnected	
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description
_	14.0	10	/	0.0588	0.12	(010)	Sheet Flow, A-B
	14.0	10	0 (.0000	0.12		Woods: Light underbrush n= 0.400 P2= 3.18"
	0.7	6	3 (0.0903	1.50		Shallow Concentrated Flow, B-C
	0	0	•				Woodland Kv= 5.0 fps
	2.9	38	1 (0.0979	2.19		Shallow Concentrated Flow, C-D
_							Short Grass Pasture Kv= 7.0 fps
	17.6	54	4 -	Total			

Subcatchment PDA-2: PDA-2

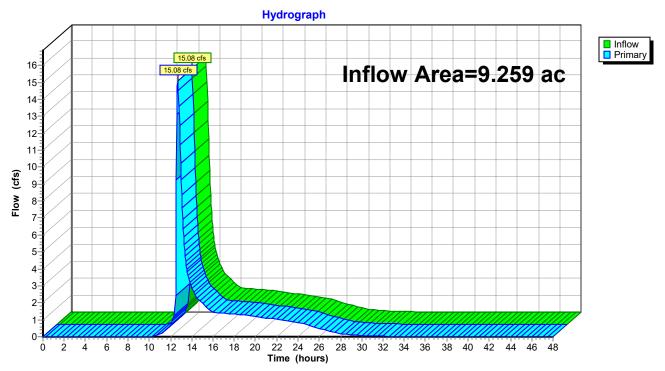

Summary for Pond B-1: B-1

Inflow A Inflow Outflow Primary Seconda Tertiary	= = = ary =	21.89 cfs @ 1 15.57 cfs @ 1 1.50 cfs @ 1 0.49 cfs @ 1	2.42 hrs, 2.69 hrs, 2.69 hrs,	Volume= Volume= Volume=	2.752 af	100 YR event 29%, Lag= 16.2 min
				n= 0.00-48.00 hr a= 13,628 sf Sto		
Center-o	of-Mass de	t. time= 155.9 i	min (1,01	7.9 - 862.0)	(100% of inflow)	
Volume				orage Descriptior		
#1	420.5	0' 56,8	68 cf Cu	istom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevatio (fee			Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
420.	50	5,695	337.7	0	0	5,695
424.0	00		453.8	27,107	27,107	13,138
426.0	00	20,376	613.0	29,761	56,868	26,695
Device	Routing	Invert	Outlet D)evices		
#1	Primary	420.50'		ound Culvert		
					g, no headwall, Ke	
				-		.0357 '/' Cc= 0.900
				•	E, smooth interior, F	-low Area= 0.20 sf
#2	Seconda	ry 421.00'		ound Culvert		
					g, no headwall, Ke	
					100° / 419.00 S= 0 E, smooth interior, F	.0294 '/' Cc= 0.900
#3	Tertiary	424.30'			th Broad-Crested I	
#3	i ci uai y	424.30			0.60 0.80 1.00 1.2	
			•	,	58 2.70 2.65 2.64	
				J,,		

Primary OutFlow Max=1.50 cfs @ 12.69 hrs HW=424.78' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 1.50 cfs @ 7.63 fps)

Secondary OutFlow Max=0.49 cfs @ 12.69 hrs HW=424.78' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.49 cfs @ 5.61 fps)

Tertiary OutFlow Max=13.52 cfs @ 12.69 hrs HW=424.78' TW=0.00' (Dynamic Tailwater) **3=Broad-Crested Rectangular Weir** (Weir Controls 13.52 cfs @ 1.87 fps)

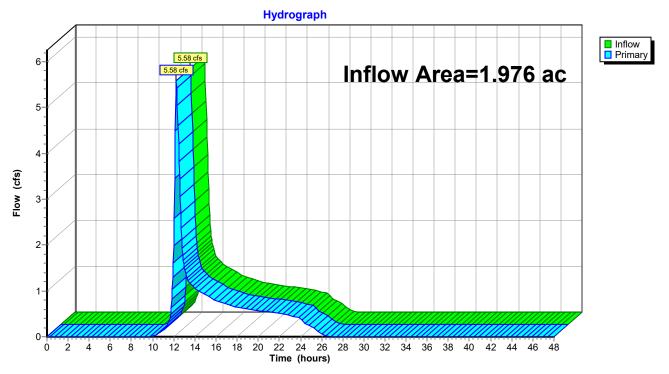


Pond B-1: B-1

Summary for Link AP-1: AP-1

Inflow Are	a =	9.259 ac,	5.05% Impervious,	Inflow Depth >	2.96"	for 100 YR event
Inflow	=	15.08 cfs @	12.69 hrs, Volume	= 2.286	af	
Primary	=	15.08 cfs @	12.69 hrs, Volume	= 2.286	af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs



Link AP-1: AP-1

Summary for Link AP-2: AP-2

Inflow Area =	1.976 ac,	0.25% Impervious, Inflow	Depth = 6.04 "	for 100 YR event
Inflow =	5.58 cfs @	12.26 hrs, Volume=	0.995 af	
Primary =	5.58 cfs @	12.26 hrs, Volume=	0.995 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Link AP-2: AP-2

APPENDIX D: NOAA ATLAS 14 PRECIPITATION FREQUENCY TABLE

NOAA Atlas 14, Volume 10, Version 3 Location name: Dayville, Connecticut, USA* Latitude: 41.8578°, Longitude: -71.8745° Elevation: 422.17 ft** * source: ESRI Maps ** source: USGS

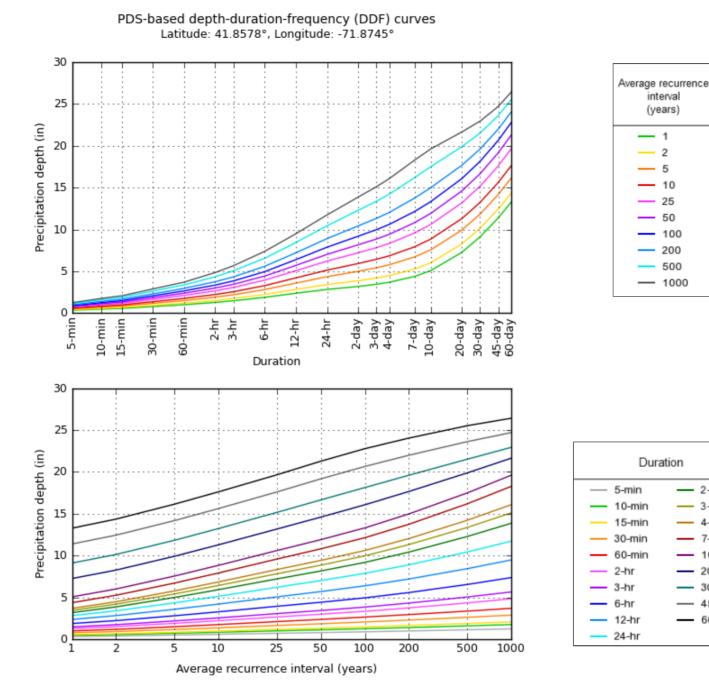
POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average	recurrence	interval (ye	ars)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.332 (0.258-0.424)	0.396 (0.307-0.505)	0.500 (0.386-0.640)	0.585 (0.450-0.753)	0.703 (0.524-0.941)	0.793 (0.578-1.08)	0.886 (0.626-1.25)	0.987 (0.664-1.43)	1.13 (0.730-1.68)	1.24 (0.784-1.89)	
10-min	0.471 (0.366-0.600)	0.561 (0.435-0.715)	0.708 (0.548-0.906)	0.830 (0.638-1.07)	0.997 (0.742-1.33)	1.12 (0.819-1.53)	1.25 (0.887-1.77)	1.40 (0.941-2.02)	1.60 (1.03-2.38)	1.75 (1.11-2.67)	
15-min	0.554 (0.430-0.706)	0.660 (0.512-0.841)	0.833 (0.644-1.07)	0.975 (0.750-1.25)	1.17 (0.873-1.57)	1.32 (0.963-1.80)	1.48 (1.04-2.08)	1.64 (1.11-2.37)	1.88 (1.22-2.80)	2.06 (1.31-3.14)	
30-min	0.775 (0.602-0.988)	0.922 (0.716-1.18)	1.16 (0.900-1.49)	1.36 (1.05-1.75)	1.64 (1.22-2.19)	1.85 (1.35-2.52)	2.06 (1.46-2.90)	2.29 (1.55-3.31)	2.62 (1.70-3.91)	2.88 (1.82-4.38)	
60-min	0.996 (0.774-1.27)	1.19 (0.920-1.51)	1.49 (1.16-1.91)	1.75 (1.35-2.25)	2.10 (1.57-2.81)	2.37 (1.73-3.23)	2.65 (1.87-3.73)	2.95 (1.98-4.26)	3.36 (2.18-5.02)	3.69 (2.34-5.62)	
2-hr	1.27 (0.995-1.61)	1.51 (1.18-1.92)	1.90 (1.48-2.41)	2.22 (1.72-2.84)	2.66 (1.99-3.55)	2.99 (2.20-4.07)	3.34 (2.39-4.72)	3.75 (2.53-5.38)	4.34 (2.82-6.44)	4.84 (3.07-7.32)	
3-hr	1.47 (1.15-1.85)	1.74 (1.36-2.20)	2.18 (1.70-2.77)	2.55 (1.98-3.25)	3.06 (2.30-4.07)	3.44 (2.54-4.68)	3.84 (2.76-5.43)	4.32 (2.93-6.19)	5.05 (3.29-7.46)	5.66 (3.60-8.52)	
6-hr	1.88 (1.48-2.35)	2.23 (1.75-2.80)	2.80 (2.20-3.53)	3.28 (2.56-4.15)	3.93 (2.98-5.21)	4.42 (3.28-5.99)	4.95 (3.58-6.96)	5.58 (3.79-7.94)	6.55 (4.27-9.62)	7.37 (4.70-11.0)	
12-hr	2.37 (1.88-2.95)	2.83 (2.24-3.53)	3.58 (2.82-4.48)	4.20 (3.30-5.29)	5.06 (3.85-6.66)	5.70 (4.25-7.66)	6.38 (4.64-8.92)	7.20 (4.91-10.2)	8.43 (5.53-12.3)	9.48 (6.07-14.1)	
24-hr	2.82 (2.25-3.50)	3.40 (2.71-4.22)	4.35 (3.45-5.42)	5.13 (4.05-6.42)	<mark>6.21</mark> (4.75-8.13)	7.01 (5.25-9.37)	<mark>7.87</mark> (5.74-10.9)	8.90 (6.09-12.5)	10.4 (6.86-15.1)	11.7 (7.53-17.3)	
2-day	3.18 (2.55-3.92)	3.87 (3.10-4.77)	4.99 (3.98-6.18)	5.92 (4.70-7.37)	7.21 (5.54-9.38)	8.16 (6.15-10.9)	9.19 (6.74-12.7)	10.4 (7.15-14.5)	12.3 (8.10-17.7)	13.9 (8.93-20.3)	
3-day	3.44 (2.77-4.23)	4.19 (3.37-5.16)	5.41 (4.33-6.68)	6.43 (5.11-7.97)	7.82 (6.03-10.1)	8.85 (6.69-11.7)	9.97 (7.34-13.7)	11.3 (7.79-15.7)	13.4 (8.83-19.2)	15.1 (9.74-22.1)	
4-day	3.69 (2.97-4.52)	4.48 (3.61-5.50)	5.77 (4.64-7.11)	6.85 (5.46-8.48)	8.33 (6.44-10.8)	9.42 (7.14-12.5)	10.6 (7.82-14.6)	12.0 (8.29-16.7)	14.2 (9.41-20.3)	16.1 (10.4-23.4)	
7-day	4.37 (3.54-5.33)	5.26 (4.26-6.43)	6.71 (5.41-8.23)	7.92 (6.35-9.75)	9.58 (7.43-12.3)	10.8 (8.22-14.2)	12.1 (8.98-16.6)	13.7 (9.50-19.0)	16.2 (10.7-23.0)	18.3 (11.8-26.5)	
10-day	5.06 (4.12-6.16)	6.01 (4.88-7.32)	7.55 (6.11-9.22)	8.83 (7.10-10.8)	10.6 (8.24-13.6)	11.9 (9.06-15.6)	13.3 (9.84-18.1)	15.0 (10.4-20.6)	17.5 (11.6-24.8)	19.6 (12.7-28.3)	
20-day	7.26 (5.93-8.78)	8.27 (6.75-10.0)	9.92 (8.07-12.0)	11.3 (9.12-13.8)	13.2 (10.3-16.7)	14.6 (11.1-18.8)	16.1 (11.8-21.4)	17.7 (12.3-24.1)	19.9 (13.3-28.0)	21.7 (14.1-31.0)	
30-day	9.10 (7.47-11.0)	10.1 (8.31-12.2)	11.8 (9.65-14.3)	13.2 (10.7-16.1)	15.2 (11.8-19.0)	16.7 (12.7-21.3)	18.1 (13.3-23.8)	19.6 (13.7-26.6)	21.5 (14.4-30.1)	22.9 (14.9-32.8)	
45-day	11.4 (9.37-13.7)	12.4 (10.2-15.0)	14.2 (11.6-17.1)	15.6 (12.7-18.9)	17.6 (13.8-21.9)	19.2 (14.6-24.3)	20.7 (15.1-26.8)	22.0 (15.5-29.7)	23.6 (15.9-32.9)	24.7 (16.1-35.1)	
60-day	13.3 (11.0-15.9)	14.4 (11.8-17.2)	16.1 (13.3-19.4)	17.6 (14.4-21.3)	19.7 (15.4-24.4)	21.3 (16.2-26.8)	22.8 (16.6-29.4)	24.1 (16.9-32.3)	25.5 (17.2-35.4)	26.4 (17.3-37.5)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue May 25 22:11:18 2021

interval

(years)

_____10

- 2-day

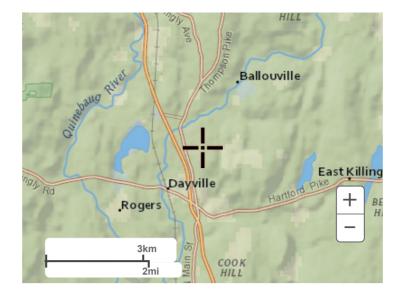
— 3-day

4-day

— 7-day

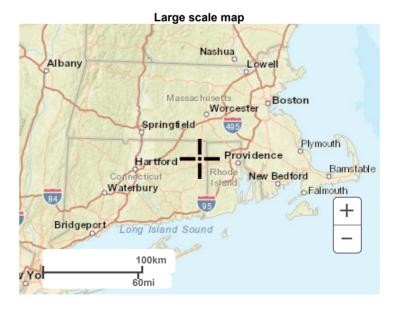
— 10-day - 20-day

— 30-day


— 45-day

— 60-day

Back to Top


Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX E: ADDITIONAL CALCULATIONS

SEDIMENT BASIN SIZING FOR KILLINGLY HS SOLAR 226 PUTNAM PIKE, KILLINGLY, CT

	TSB-1
Total Drainage Area (acre)	9.26
Total Drainge Area (square miles)	0.0145
Disturbed Area (acre)(DA*)	3.77
Remaining Existing Drainage Area (acre)(DA^)	5.49
A* (Disturbed Area)(ton/acre/yr)	50.0
A^ (Existing Drainage Area)(ton/ac/yr)	0.2
DR	34%
TE	0.8
γ (sandy loam) (lbs/cf)	85
Sediment Volume Calcs:	
Req. Volume Dry (acre-ft/yr)	0.03
Req. Volume Dry (cf)	1,214
Req. Volume Wet (Dry x 2) (cf)	2,428
Residence Volume Calcs:	
SCS Runoff Volume (in), Vr (from HydroCAD)	1.61
Q10 (cfs) (from HydroCAD)	9.18
Q10/DA	0.99
Qo/Qi (Figure SB-13)	0.100
Qo (max over spillway)	0.92
Release Rate (csm)	63.45
V5 (in) (Figure DB-6)	0.80
Vs (acre-ft)	0.62
Vs (cf)	26,888
Volumes Required:	
Sediment Wet Volume (cf)	2,428
Residence Volume (10 YR Storm) (cf)	26,888
Total Volume Required (cf)	29,316
Volumes Provided:	20.000
Total Volume Provided (cf)	30,302

WATER QUALITY VOLUME CALCULATIONS FOR KILLINGLY HS SOLAR 226 PUTNAM PIKE, KILLINGLY, CT

$$WQV = \frac{(1'')(R)(A)}{12}$$

 $V = WQV + ((P)(A_b)/12)$

V=required basin storage volume (ac-ft)

where:
$$WQV =$$
 water quality volume (ac-ft) WQV=Water Quality Volume (ac-ft)
 $R =$ volumetric runoff coefficien P= design water quality precipitation (in)

= 0.05+0.009(I) Ab=basin surface area (ac)

I = percent impervious cover

A = site area in acres

Area (ac)	Pervious (ac)	Imperv. (ac)	I	R	WQV (ac-ft)	P (in)	Ab (ac)	V (ac-ft)	Total V Req. (cf)	V Provided (cf)
11.23	11.18	0.06	1%	0.05	0.05	n/a	n/a	n/a	2,232.24	-
9.26	9.26	-	0%	0.05	0.04	1	0.266531	0.06	2,648.02	4,007.00

CT599140_KillinglyHS - DESIGN - Rev0Type IIIPrepared by MicrosoftHydroCAD® 10.00-25 s/n 07402 © 2019 HydroCAD Software Solutions LLC

		•	•		
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
421.00	832	0	423.60	4,625	6,430
421.05	876	43	423.65	4,728	6,663
421.00		88	423.70		6,902
	921			4,832	
421.15	967	135	423.75	4,938	7,147
421.20	1,015	184	423.80	5,044	7,396
421.25	1,063	236	423.85	5,152	7,651
421.30	1,113	291	423.90	5,260	7,911
421.35	1,164	348	423.95	5,370	8,177
421.40	1,216	407	424.00	5,481	8,448
421.45	1,269	469			
421.50	1,323	534			
421.55	1,379	602			
421.60	1,435	672			
421.65	1,493	745			
421.70	1,551	821			
421.75	1,611	900			
421.80	1,672	982			
421.85	1,735	1,068			
421.90	1,798	1,156			
421.95	1,862	1,247			
422.00	1,928	1,342			
422.05	1,995	1,440			
422.10	2,062	1,542			
422.15	2,131	1,646			
422.20	2,202	1,755			
422.25	2,273	1,867			
422.30	2,345	1,982			
422.35	2,419	2,101			
422.40	2,493	2,224			
422.45	2,569	2,350			
422.50	2,646	2,481			
422.55	2,724	2,615			
422.60	2,803	2,753			
422.65	2,884	2,895			
422.70	2,965	3,042			
422.75	3,048	3,192			
422.80	3,131	3,346			
422.85	3,216	3,505			
422.90	3,302	3,668			
422.95	3,389	3,835	1 6-00	8 AN 1151	r e 423.00'
<mark>423.00</mark>	3,478	<mark>4,007</mark>			
423.05	3,567	4,183	-	STORAGE	= 4,007 CF
423.10	3,657	4,364		•	•
423.15	3,749	4,549			
423.20	3,842	4,739			
423.25	3,936	4,933			
423.30	4,031	5,132			
423.35	4,127	5,336			
423.40	4,224	5,545			
423.45	4,323	5,759			
423.50	4,423	5,977			
423.55	4,523	6,201			

Stage-Area-Storage for Pond FB-1: FB-1

PIPE CALCS FOR KILLINGLY HS SOLAR 226 PUTNAM PIKE, KILLINGLY, CT

PIPE	PIPE DIAMETER (IN)	LENGTH (FT)	INV. IN (FT)	INV. OUT (FT)	SLOPE (FT/FT)	N VALUE	MAX VELOCITY (FT/SEC)
B-1A	6	42	420.50	419.00	0.0357	0.0130	5.36
B-1B	4	68	421.00	419.00	0.0294	0.0130	3.71

A	PRON SIZING		MIN. LE	NGTH (FT)		MIN. W2 (FT)			
PIPE	Sp (FT)	Q (CFS FOR 25YR STORM)	TYPE A	TYPE B	MIN. W1 (FT)	TYPE A	ТҮРЕ В		
B-1A	0.50	1.43	14.93	22.87	1.50	11.95	10.65		
B-1B	0.33	0.47	8.61	12.32	1.00	7.02	5.93		

APPENDIX F: GEOTECHNICAL REPORT

GEOTECHNICAL ENGINEERING REPORT PROPOSED SOLAR ARRAY KILLINGLY HIGH SCHOOL 226 PUTNAM PIKE DAYVILLE, CONNECTICUT

Prepared for:

All-Points Technology Corporation, P.C. 3 Saddlebrook Drive Killingworth, Connecticut 06419

Prepared by:

Down To Earth Consulting, LLC 122 Church Street Naugatuck, Connecticut 06770

> File No. 0032-026.00 December 2019

Down To Earth Consulting, LLC 122 Church Street, Naugatuck, CT 06770 (203) 683-4155

December 28, 2019 File No. 0032-026.00

Mr. Bradley J. Parsons, PE All-Points Technology Corporation 3 Saddlebrook Drive Killingworth, Connecticut 06419

Via email: <u>bparsons@allpointstech.com</u>

Re: Geotechnical Engineering Report Proposed Killingly High School Solar Array 226 Putnam Pike, Dayville, Connecticut

Down To Earth Consulting, LLC (DTE) is pleased to submit this preliminary geotechnical engineering report for the proposed solar array that will be located on 226 Putnam Pike in Dayville, Connecticut (Site) for All-Points Technology Corporation (Client). We appreciate this opportunity to work with you. Please call if you have any questions.

Sincerely,

Down To Earth Consulting, LLC

Raymond P. Janeiro, P.E. Principal

Daniel F. LaMesa, P.E. Principal/Reviewer

Proposed Solar Array Killingly High School, Dayville, CT File No. 0032-026.00 – December 28, 2019 Page No. i

TABLE OF CONTENTS

1.0	INTR	ODUCTION1
2.0		KGROUND1
3.0	SUB	SURFACE DATA1
	<u>3.1</u>	GENERAL SITE GEOLOGY 1
	3.2	TEST BORINGS 1
	3.3	LABORATORY TESTING
	3.4	INFILTRATION TESTING
4.0	SUB	SURFACE CONDITIONS2
	4.1	SUBSURFACE PROFILE
	4	.1.1 Fill
	4	.1.2 Subsoil
	4	.1.3 Glacial Till
	4.2	GROUNDWATER
5.0	ENG	GROUNDWATER
6.0	PREI	LIMINARY GEOTECHNICAL ENGINEERING RECOMMENDATIONS
	6.1	RACKING SYSTEM FOUNDATIONS
	6	.1.1 Load Testing and Drivability
	<u>6.2</u>	EQUIPMENT FOUNDATIONS
7.0	MAT	ERIALS RECOMMENDATIONS
	7.1	COMPACTED GRANULAR FILL
	7.2	CRUSHED STONE
	7.3	COMPACTION REQUIRMENTS
8.0	CON	STRUCTION RECOMMENDATIONS
	8.1	DEEP FOUNDATIONS - RACKING SYSTEMS
	8.2	SHALLOW FOUNDATIONS – EQUIPMENT PADS
	8.3	TEMPORARY EXCAVATIONS
	8.4	TEMPORARY GROUNDWATER CONTROL7
9.0	REVI	TEMPORARY GROUNDWATER CONTROL
10.0		STRUCTION QUALITY CONTROL
11.0	CLO	SURE7

APPENDICES

APPENDIX 1 – FIGURES APPENDIX 2 – TEST BORING LOGS APPENDIX 3 – LABORATORY TEST RESULTS APPENDIX 4 – INFILTRATION TEST LOGS APPENDIX 5 – LIMITATIONS

1.0 INTRODUCTION

Down To Earth Consulting, LLC, completed a subsurface exploration program and geotechnical engineering evaluation for the proposed solar array foundations. Our geotechnical engineering services included: reviewing project plans, completing test borings, infiltration tests, and soil laboratory testing, characterizing subsurface conditions within the solar array limits, performing geotechnical engineering analyses, and providing geotechnical design and construction recommendations for the project. Refer to Figures 1 and 2 (in Appendix 1) for an area plan and site plan, respectively. Our services were performed in accordance with our November 8, 2019 proposal, which was based in part on a project Site Plan, prepared by Greenskies, dated July 15, 2019.

2.0 BACKGROUND

The proposed ground-mounted solar array will be located at the Killingly High School. The solar array will consist of about 3,400 modules and will generally be located in an undeveloped area south of the existing school building. Nominal cuts/fills on the order of 2-feet or less are anticipated to achieve design grades, as the solar array structures will generally conform to the existing Site topography. Refer to Figure 2 (Appendix 1) for existing site features and proposed solar array location. Foundation reaction loads were not available at the time of this writing.

3.0 SUBSURFACE DATA

3.1 GENERAL SITE GEOLOGY

Published surficial and bedrock geological map data (1:125,000 scale, Surficial Materials Map of Connecticut, Janet Radway Stone, 1992 and 1:125,000 scale, Bedrock Geological Map of Connecticut, John Rodgers, 1985) was reviewed. The Site surficial material is mapped as glacial till and the underlying bedrock is classified as granitic gneiss. Bedrock outcrops are mapped at the Site just north and south of the proposed array area.

3.2 TEST BORINGS

We completed five test borings (B-1 through B-5) drilled by our subcontractor General Borings, Inc. on November 27, 2019. Boring locations are depicted on Figure 2 (Appendix 1) and the logs are included in Appendix 2. Borings were located in the field by taping/pacing from existing site features and should be considered approximate.

The borings were drilled to explore the soil, bedrock (if encountered), and groundwater conditions in the proposed solar array area. Hollow-stem auger drilling methods were used to advance borings to depths ranging from approximately 8.5 to 22 feet below existing grades. Borings were terminated in natural soil deposits and in most instances (except for B-4 and B-5) refused on boulders and/or inferred bedrock.

Representative soil samples were obtained in the borings for soil classification and laboratory testing by split barrel sampling procedures in general accordance with ASTM D-1586. The split-spoon sampling procedure utilizes a standard 2-inch O.D. split-barrel sampler that is driven into the bottom of the boring with a 140-pound hammer falling a distance of 30 inches. The number of

blows required to advance the sampler the middle 12-inches of a normal 24-inch penetration is recorded as the Standard Penetration Resistance Value (N). The blows (i.e., "N-Value") are indicated on the boring logs at their depth of occurrence and provide an indication of the relative consistency of the material.

Groundwater levels were measured using a weighted tape in open drill holes and/or inferred from wet soil samples during drilling.

3.3 LABORATORY TESTING

Soil samples were collected from 0 to 4 feet below grade at Boring B-1 and B-4 to evaluate the corrosivity potential of sampled soils. Samples were analyzed for pH (ASTM D4972), Sulfates (ASTM D4327), Chlorides (ASTM D4327), and Resistivity (ASTM G57). The results of the laboratory testing are included in Appendix 3. Based on the laboratory test results, the soil samples are not considered to be corrosive.

3.4 INFILTRATION TESTING

We performed two falling head permeability tests to estimate the vertical hydraulic conductivity of the upper site soils. Tests were performed in 3-inch diameter PVC pipe at depths of 3 and 5 feet below existing grades. Test locations are depicted on Figure 2 (Appendix 1) and the field logs are included in Appendix 4.

Measured permeability values averaged about 2x10⁻⁴ inches per minute for both tests. Hydraulic conductivities will vary between test locations.

4.0 SUBSURFACE CONDITIONS

4.1 SUBSURFACE PROFILE

The generalized subsurface profile, as inferred from the subsurface data, consists of natural Subsoil and Glacial Till Deposits. Fill was also encountered at B-3 and B-5 above the natural soil deposits. An approximate 6- to 8-inch layer of Topsoil/Forest Debris was encountered at the surface of the explorations. The following is a more detailed description of the subsurface materials encountered:

4.1.1 Fill

Fill was encountered directly below the Topsoil/Forest Debris at Boring B-3 and B-5. This stratum was about 2 feet thick and typically consisted of loose, brown, fine to coarse sand with some (20 to 35%) to and (35 to 50%) amounts of silt and trace (1% to 10%) amounts of fine gravel. The encountered Fill appeared to consist of reworked native materials. The thickness, character, and consistency of the Fill will vary between exploration locations.

4.1.2 Subsoil

Subsoil was encountered at each of the boring locations where Fill wasn't encountered (i.e., B-1, B-2, and B-4) directly below the Topsoil/Forest Debris. This stratum ranged in thickness from

about 0 to 3 feet and generally consisted of loose, orange-brown, silt with varying amounts of sand (about 20 to 60%) and trace amounts of gravel. The subsoil did not have an organic odor, but trace (0 to 10%) amounts of organic material (e.g., rootlets) was observed in many samples.

4.1.3 Glacial Till

Natural Glacial Till was observed below the Fill or Subsoil in each of the borings. This material generally consisted of medium dense to very dense, brown/gray, fine to coarse sand with varying amounts of gravel (20 to 50%) and silt (10 to 40%). Decomposed rock fragments were observed in the Glacial Till near boring termination depths. Sporadic cobbles and boulders were inferred in this stratum based on "drill rig chatter". Borings B-1, B-2 and B-3 were terminated on inferred bedrock (or possible boulders) based on drilling refusal. Based on our field observations, bedrock may be very shallow (and possibly outcrop) in the area west of Boring B-2.

4.2 GROUNDWATER

Groundwater was measured in the boreholes during drilling and was encountered at about 4 to 10 feet below grade. Groundwater levels measured in the boreholes may not have had sufficient time to stabilize and should be considered approximate. Groundwater levels will vary depending on factors such as temperature, season, precipitation, construction activity, and other conditions, which may be different from those at the time of these measurements.

5.0 ENGINEERING IMPLICATIONS OF SUBSURFACE CONDITIONS

The proposed ground mount solar panels can be supported on driven steel pile foundations. The piles will need to be designed to resist compression, tension, and lateral loads. The pile design capacities will need to be determined based on the results of pile load testing completed at the Site. Obstructions (e.g., boulders and shallow bedrock) may require predrilling of pilot holes to accommodate pile driving, which may impact the capacity of the piles. If piles cannot penetrate the soils sufficiently, drilling of oversized holes backfilled with grout may be required.

6.0 PRELIMINARY GEOTECHNICAL ENGINEERING RECOMMENDATIONS

We offer the following preliminary geotechnical design recommendations based on the subsurface conditions encountered at the Site, available project information, and the proposed construction.

6.1 RACKING SYSTEM FOUNDATIONS

The proposed photovoltaic modules can be supported on driven steel piles end bearing in natural Sand Deposits. The steel piles should conform to ASTM A 572, Grade 50 and have hardened pile tips (e.g., pile driving shoes) to minimize pile damage on potential obstructions (e.g. boulders) and when bedrock is encountered. A minimum steel section corrosion loss of 1/16-inch all around the piles should be used. DTE recommends the following preliminary static design parameters for a driven pile foundation alternative:

DESCRIPTION	VALUE								
Maximum Net Allowable Bearing Capacity ¹ Glacial Till	5 kips per square foot (ksf)								
<u>Ultimate Skin Friction Value</u> ² Glacial Till (>3.5 fbg)	450 pounds per square foot (psf)								
Modulus of Lateral Subgrade Reaction ³ Glacial Till (>3.5 fbg)	100 pci								
Angle of Internal Friction Glacial Till (>3.5 fbg)	36								
<u>Total Soil Unit Weight</u> Glacial Till	135 pounds per cubic foot (pcf)								
 End-bearing should be neglected for uplift safety of 3. 	calculations. Provided value assumes a factor of								
 Contribution to pile capacity within the frost depth (i.e., above depths of 3.5 feet) should be ignored. The uplift capacity should be based on the dead weight of the pile and side resistance provided by the subsurface soils (i.e., end bearing should be neglected). To apply to foundation under lateral leading (o.g., Ensoft I PILE). 									

3. To analyze foundation under lateral loading (e.g., Ensoft LPILE).

4. All values provided in this table are preliminary and must be verified in the field by load testing.

Center-to-center pile spacing should not be less than 30 inches or 3 pile diameters. Final pile order lengths should be established based on the results of pile testing and the contractor should be prepared to increase anticipated pile lengths as conditions are exposed in the field.

Piles should be installed to a minimum ultimate geotechnical axial capacity of the structural load multiplied by 2 (assuming load testing is performed). Based on the recommended pile type, bearing material, and anticipated loads, we estimate negligible pile settlements.

The lateral capacity of the upper 30 inches of soil should be neglected due to loss of strength from frost action and the presence of loose surficial soils. Appropriate lateral capacity reductions associated with group effects should be used for piles having a center-to-center spacing of less than 5 times their largest cross-sectional dimension.

6.1.1 Load Testing and Drivability

Tension and lateral load tests should be performed on test piles to finalize foundation design for uplift and lateral load capacity. Compression load tests should also be completed if end bearing capacity of piles is used. Load tests should be completed near the boring explorations in order to corroborate the load test and subsurface exploration data and develop final design recommendations. The testing results should be provided to DTE to reevaluate the above design parameters.

We recommend that a drivability analysis (i.e., Wave Equation Analysis for Piles (WEAP)) be performed for the site-specific conditions and selected pile driving hammer to evaluate the proposed pile driving equipment and development of stresses in the piles. The maximum

allowable driving stress in both tension and compression should not exceed 45 ksi, which is based on applying a reduction factor of 0.9 to the yield strength of Grade 50 Steel.

6.2 EQUIPMENT FOUNDATIONS

The proposed accessory structures may be designed as slabs-on-grade bearing on a base course of at least 12-inches of CGF or Crushed Stone overlying proof-rolled Glacial Till Deposits. Crushed Stone, if used, should be separated from soil subgrades, excavation sidewalls and backfill using a geotextile separation fabric.

DTE recommends a maximum net allowable bearing pressure of <u>2 kips per square foot (ksf)</u> for slab design. Frost walls should be embedded a minimum of 42 inches below final grades for frost protection. Alternatively, dense insulation boards could be used under lightly loaded slabs-on-grade to reduce frost penetration.

The total settlement is expected to be less than 1 inch and differential settlement to be less than 0.5 inches. We recommend an ultimate coefficient of sliding friction of 0.4 (except if insulation boards are used to minimize frost penetration). A factor of safety of at least 1.5 should be applied to calculated sliding resistance.

The design subgrade modulus for the recommended subgrade and base course is 200 pounds per cubic inch.

7.0 MATERIALS RECOMMENDATIONS

7.1 COMPACTED GRANULAR FILL

Compacted Granular Fill (CGF) for use as structural fill shall consist of inorganic soil free of clay, loam, ice and snow, tree stumps, roots, and other organic matter; graded within the following limits:

Sieve Size	Percent finer by weight
4-inches	100%
No. 10	30 - 100
No. 40	10 - 90
No. 200	0 - 12*

* To be considered non-frost susceptible, granular fill should have a maximum of 3 percent of particles by weight smaller than 0.02mm in effective diameter.

7.2 CRUSHED STONE

Crushed Stone for use below foundations shall consist of sound, tough, durable, rock that is graded within the following:

Sieve Size	Percent finer by weight
5/8-inches	100%
1/2-inch	85 - 100
3/8 inch	15 - 45

No. 4	0 - 15
No. 8	0 - 5

7.3 COMPACTION REQUIRMENTS

CGF should be placed in loose lifts not exceeding 8-inches in depth and compacted to at least 95 percent of its maximum dry density, and within 2% of optimum moisture content, as determined by ASTM D1557, Method C (Modified Proctor).

Crushed Stone is considered to be "self-compacting" and would negate the need to run laboratory proctor testing and have field density testing of in-place lifts. The crushed stone should be plate compacted to "chink up" the working surface in lifts. We recommend placing Crushed Stone in maximum 12-inch lifts and compacting the lifts with a minimum of four passes with a vibratory plate compactor weighing a minimum of 1,000 pounds and with a minimum centrifugal force of 10,000 pounds.

8.0 CONSTRUCTION RECOMMENDATIONS

8.1 DEEP FOUNDATIONS – RACKING SYSTEMS

Technical specifications should be prepared by the design team that require detailed material and construction submittals and proof of experience in pile installation. The installation method or combination of methods selected by the contractor should be submitted for review by the design team, prior to mobilization of equipment. Specifications should include provisions for removing encountered cobbles, boulders, and other obstructions as a contingency. Any pile driving refusal remedies (pre-drilling, etc.) that are adopted by the Contractor during construction will require that those piles be load tested.

8.2 SHALLOW FOUNDATIONS – EQUIPMENT PADS

The proposed equipment areas should be cleared of existing vegetation and topsoil. Cobbles, boulders, and any identifiable compressible or deleterious materials should be removed. Existing fill (including re-worked parent materials), and other unsuitable materials, must be removed from beneath bearing zones of influence to the top of firm, natural Glacial Till Deposits prior to construction. Over-excavation below bearing areas should include the zone of influence, defined as the area beneath 1 horizontal to 1 vertical (1H:1V) lines extending downward and outward from pad areas. Equipment pads shall bear on a prepared subgrade of firm natural Glacial Till Deposits, or CGF or Crushed Stone (over firm natural soils). Refer to Section 7.0 for material and placement recommendations.

Earthwork should be performed in dry conditions so that disturbance to foundation subgrades is limited. During earthwork, the Contractor should be responsible for protecting subgrades from the elements and maintaining the soils in a suitable state until completion of the project. Backfill should not be placed over a subgrade with standing water or that is frozen. Standing water, if present, should be removed and any soft and yielding soil should be removed prior to backfill placement. Excavations to subgrade levels should be performed using a smooth-edged bucket to minimize possible disturbance to the in-place subgrade soils.

Soil subgrades should be proof-rolled under the observation of a qualified Geotechnical Engineer with at least four (4) passes of a smooth-drum vibratory roller (minimum 8,000 pounds, minimum centrifugal force of 12,500 pounds) or, where approved by the geotechnical engineer, a vibratory plate compactor with a minimum of 2,500 pounds of centrifugal force. Any soft or loose zones identified during proof-rolling should be excavated and replaced with CGF, as necessary, and as required by the Geotechnical Engineer.

8.3 TEMPORARY EXCAVATIONS

The site soils are classified as OSHA Class "C" soil and can be cut at a maximum one vertical to one and a half horizontal (1V:1.5H) slope up to a maximum excavation depth of 20 feet. These maximum slope and excavation depths assume no surcharge load (i.e., stockpiles, construction equipment, etc.) at the top of the excavations or groundwater seepage.

8.4 TEMPORARY GROUNDWATER CONTROL

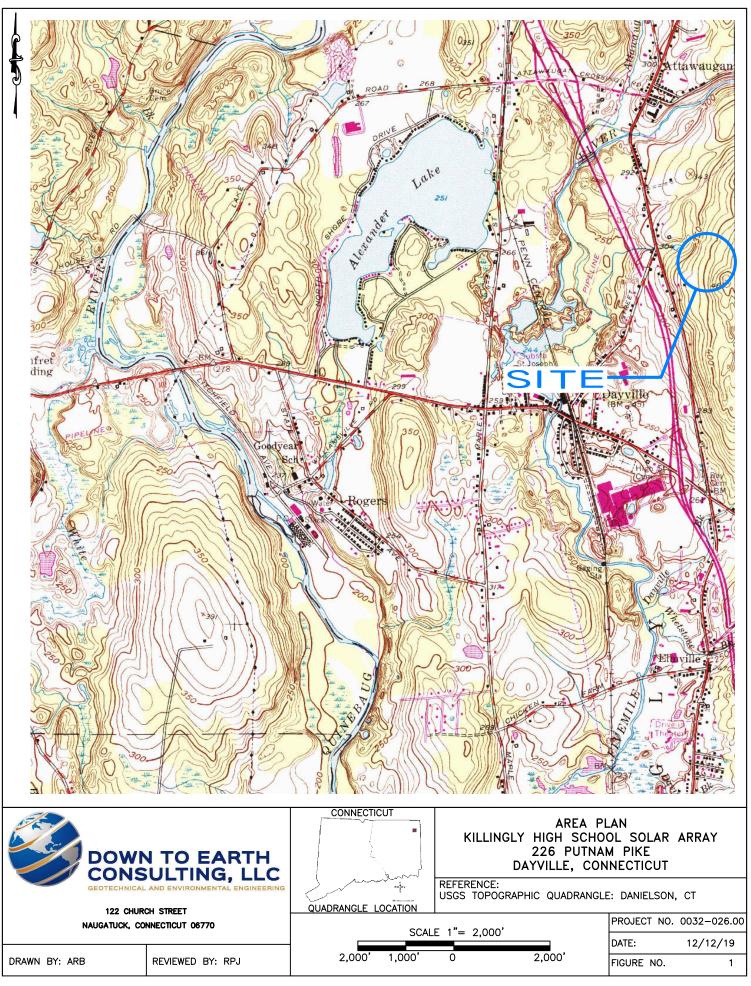
Based on information obtained from the subsurface exploration program, groundwater may be encountered during construction. We anticipate that water (stormwater, perched water, etc.) can be managed with conventional sump pumps and trenches in the excavations. Stormwater runoff should not be permitted to accumulate on/within exposed subgrades and the runoff should be directed away from the exposed subgrade areas.

9.0 REVIEW OF FINAL DESIGN, PLANS, AND SPECIFICATIONS

When project plans are finalized, and specifications are available, they should be provided to DTE for review of conformance with our preliminary geotechnical recommendations. If any changes are made to the proposed structure locations or bearing levels, the recommendations provided in this report will need to be verified by DTE for applicability.

10.0 CONSTRUCTION QUALITY CONTROL

We further recommend that DTE be retained during earthwork construction to observe excavation to subgrade, fill placement and compaction, subgrade preparation, and deep foundation installation. The geotechnical engineer in the field should observe the work for compliance with the recommendations in this report, identify changes in subsurface conditions from those observed in the explorations should they become apparent, and assist in the development of design changes should subsurface conditions differ from those anticipated prior to the start of construction.


11.0 CLOSURE

We trust the information presented herein is sufficient for your use to progress design of the proposed solar array. We have enjoyed working with you on this project and look forward to our continued involvement. Please do not hesitate to call us if you have any questions.

This report is subject to the limitations included in Appendix 5.

APPENDIX 1 -

FIGURES

OTHERS						
DRAWN BY						
ARB						
CHECKED BY						
RPJ	NO.	DATE		DRWN.	CHKD	APP\
APPROVED BY RPJ			REVISIONS			

NOTES: 1) BASE MAP DEVELOPED FROM AN ELECTRONIC FILE PREPARED BY GREENSKIES, ENTITLED "PROPOSED SITE PLAN, KILLINGLY HIGH SCHOOL, PV SOLAR ARRAY, 226 PUTNAM PIKE, DAVYVILLE CT 06241", DATED 6/27/2019. ORIGINAL SCALE 1"=200'. 2) BORINGS WERE COMPLETED BY GENERAL BORINGS COMPANY, INC. AND OBSERVED BY DOWN TO EARTH CONSULTING, LLC. 3) THE LOCATIONS OF THE EXPLORATIONS WERE DETERMINED BY TAPING AND VISUAL ESTIMATES FROM EXISTING SITE FEATURES. THESE LOCATIONS SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.										
NGLY HIGH SCHOOL SOLAR ARRAY	FILE NO. 0032-026.00									
226 PUTNAM PIKE DAYVILLE, CONNECTICUT AS NOTED 12/6										
E ITE AND EXPLORATION LOCATION PLAN	AS NOTED 12/6/19 FIGURE NO. 2									

B-1 TEST BORING NO. AND LOCATION

<u>LEGEND</u>

APPENDIX 2 -

TEST BORING LOGS

	A A	DO CO GEOTEC	WN TO NSUL	O EARTH TING, LL		PROJECT BORING NO. KILLINGLY HIGH SCHOOL SOLAR ARRAY SHEET 226 PUTNAM PIKE FILE NO. DAYVILLE, CONNECTICUT CHKD. BY						1	B-1 of <u>1</u> 0032-026.00 RPJ		
Bori	ng Co.			Ge	neral Borings, Inc.		Boring Location					See Boring Location Plan			
	Driller John Wyatt Logged By Mateusz Fekieta							Ground S Date Star	urface El.	Not Avail		Datum	Available 1/27/2019		
		-		N	/ateusz Fekieta			_ Date Star				Date End			
	nmer T npler S				Auto Har 1-3/8" I.D. Sp				Date	Groundwa Time	Depth	<u> </u>	(from ground	tabilization Time	
Тур	e Drill I	Rig:			D-50 AT\				11/27/19	-	5.5			30 minutes	
Drill D	ing Me	thod:			3.25 Inch I.D. Hollo	w Stem Au	gers		11/27/19	-	4	-		2 hours	
E P	Casing		SA	MPLE INFO	RMATION				SAMP	LE DESCRIP	TION			STRATA DESCRIPTION	
т н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)									
1			0.4/0											8"+/- Topsoil/ Forest Debris	
2 3		S-1	24/6	1 to 3	3-5-2-3		Loose, o	orange-brown	SILT and fine	to coarse SA	ND, trace	e fine Gravel,	trace Roots	SUBSOIL	
4		S-2	24/9	3 to 5	3-6-10-16		Mediur	n dense, gray	/liaht brown, fi	ne to coarse	SAND ar	d SILT. little f	ine Gravel		
5			0.4/00	5 to 7	10 10 15 10									-	
6 7		S-3	24/20	5 to 7	16-12-15-13		Mediu	um dense, gra	y SILT and fin	e to coarse S	SAND, littl	e fine to coars	se Gravel		
8															
9															
10 11		S-4	24/18	10 to 12	14-27-35-23				<i>c</i> .	04115	0.11				
12								Very dense, g	gray fine to co	arse SAND, s	some Silt,	little fine Gra	vel	_	
13															
14 15															
16		S-5	22/15	15 to 16.9	14-22-32-50/2"		Very der								
17								ND OF EXPLO		(fragments,					
18 19							Ľ	ND OF EXFLU		FUSAL) AT	10.9 FEE	T BELOW GF	VADE		
20															
21															
22 23															
24															
25															
26 27															
28															
29															
30 31															
32															
33															
34 35															
36															
37															
38 39															
40								_							
_		N-Val			7 N-Values 2 - Very Soft		ortions = 1 to 10%	1. S denotes s	plit-barrel sam	oler.	SYME	7. WH der	notes weight of	hammer	
	0 to 4 - Very Loose 5 to 10 - Loose 11 to 30 - Medium Dense 31 to 50 - Dense Over 50 - Very Dense		3 to 4 - Soft Little = 5 to 8 - Medium Stiff Some = 9 to 15 - Stiff And = 16 to 30 - Very Stiff		10 to 20% 2. ST denotes 3-inch O.D. undisturbed sample. 8. WR denotes weight of r 20 to 35% 3. UO denotes 3-inch Osterberg undisturbed sample. 9. PP denotes Pocket Pen 35 to 50% 4. PEN denotes penetration length of sample. 10. FVST denotes field val 5. REC denotes recovered length of sample. 11. RQD denotes Rock Que						rods netrometer. ane shear test. uality Designation.				
2) W 3) C	Over 30 - Hard 6. SPT denotes Standard Penetration Test. 12. C denotes core run number. IELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual. 12. C denotes core run number. Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors. 12. C denotes core run number. Obbits and/or boulders were inferred based on auger chatter at 4 feet and from about 5 to 10 feet, 12 to 13 feet, 14 to 16 feet below grade. Sampler refusal at about 16.9 feet on inferred boulder or bedrock.														

DOWN TO EARTH CONSULTING, LLC					PROJECT BORING NO. KILLINGLY HIGH SCHOOL SOLAR ARRAY SHEET 1 226 PUTNAM PIKE FILE NO. DAYVILLE, CONNECTICUT CHKD. BY						B-2 of <u>1</u> 0032-026.00 RPJ			
Drill	Boring Co. General Borings, Inc. Driller John Wyatt Logged By Mateusz Fekieta													Available 1/27/2019
Han	nmer T	уре:			Auto Har	mmer				Groundwat	ter Readir	igs (fro	m ground	surface)
	npler S e Drill I				1-3/8" I.D. Sp D-50 AT				Date 11/27/19	Time	Depth (f) Elev.	S	tabilization Time wet sample
	ing Me	•			3.25 Inch I.D. Hollo		gers		11/27/19	-	4.5	-		1.5 hours
E	Casing		SAI	MPLE INFO	RMATION				SAMPL	E DESCRIPT	ION			STRATA DESCRIPTION
Р Т Н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min.ft)							DESCRIPTION	
1						. ,								6"+/- Topsoil/
2 3		S-1	24/2	1 to 3	3-4-4-7			Loose, orange	-brown SILT,	some fine to o	coarse Sa	nd, trace Roots		Forest Debris SUBSOIL
4 5		S-2	24/20	3 to 5	11-12-19-20		Dense, gi	ay, fine to coa	rse GRAVEL	and SAND, so	ome Silt, li	ttle fine to coars	se Gravel	
6		S-3	24/9	5 to 7	17-22-26-35		Dense,	gray, fine to co		L and SAND, agments, wet	little Silt, v	vith decompose	d Rock	TILL
8													_	1
9 10								IND OF EXPLO	JRATION (RE	FUSAL) AT 8	3.5 FEET I	BELOW GRADE	=	
11														
12 13														
14														
15 16														
17														
18 19														
20														
21														
22 23														
24 25														
25 26														
27														
28 29														
30														
31 32							-							
33														
34 35														
36														
37 38		<u> </u>												
39														
40	SDT	N-Val	100	601	۲ N-Values	Bro	portions				SYMBC			
	0 to 4	- Very L	.oose	0 to	2 - Very Soft	Trace	= 1 to 10%	1. S denotes s				7. WH denotes	-	
	5 to 10 - Loose 3 to 11 to 30 - Medium Dense 5 to 8 - M 31 to 50 - Dense 9 to 1 Over 50 - Very Dense 16 to 30			to 4 - Soft - Medium Stiff to 15 - Stiff 30 - Very Stiff er 30 - Hard	Some =	= 10 to 20% = 20 to 35% 35 to 50%	0 to 35% 3. UO denotes 3-inch Osterberg undisturbed sample. 9. PP denotes Pocket Pe					Pocket Per otes field va tes Rock Q	netrometer. ine shear test. uality Designation.	
2) W 3) C	FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors. Obbles and/or boulders were inferred based on auger chatter from about 6 to 7 feet and 8 to 8.5 feet below grade. Auger refusal at 8.5 feet below grade on inferred boulder or bedrock.													

				D EARTI		ł	-	PROJECT HIGH SCHOO 226 PUTNAM WILLE, CONN	L SOLAR ARI PIKE	RAY		BORING NO. SHEET FILE NO. CHKD. BY	1	B-3 of <u>1</u> 0032-026.00 RPJ
Drill	ng Co. er ged By				neral Borings, Inc. John Wyatt ⁄Iateusz Fekieta			Boring Loo Ground Su Date Start	urface El.	Not Availa 11/27/20	able	ee Boring Locati Datum Date End	Not	Available 1/27/2019
Han	nmer T	vne:			Auto Har	mmer		-		Groundwa	tor Roadii	nas (fror	n ground	surface)
	npler S				1-3/8" I.D. Sp				Date	Time	Depth (f			abilization Time
	e Drill I				D-50 AT				11/27/19	-	10	-		wet sample
Drill	ing Me	thod:			3.25 Inch I.D. Hollo	w Stem Au	gers							
E P	Casing			MPLE INFO	-				SAMPL	E DESCRIP	TION			STRATA DESCRIPTION
т н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)								
1		0.4	04/40	4 10 0	4.4.0.40			T C".		6				3"+/- Topsoil
2		S-1	24/16	1 to 3	1-1-2-10		Bot		Loose, browr e, gray fine to			ind SIL I , trace fine Grav	/el	FILL
4		S-2	24/20	3 to 5	10-19-22-20			Donoo ar	ay fine to coar			como Silt		
5								Dense, gra	ay fille to coal	se sand an		., some om		
6		S-3	24/22	5 to 7	10-16-11-10			Medium dense	e, gray fine to	coarse SANE) and GRA	VEL, some Silt		
7 8														I TILL
9														
10														
11		S-4	24/2	10 to 12	31-10-17-14		Medium o		e to coarse GI mposed Rock			arse Sand, little	Silt, with	
12 13								deco	Inposed Rock	inaginerits a	t sample ti	p, wei		
14							E	ND OF EXPLO	RATION (RE	FUSAL) AT 1	3.5 FEET	BELOW GRADE	Ξ	
15														
16														
17														
18 19														
20														
21														
22														
23 24														
25														
26														
27														
28 29														
30														
31														
32														
33 34														
35														
36														
37														
38 39														
39 40														
	SPT	N-Val	ues	SPT	N-Values	Pro	portions				SYMBO	DL KEY		•
Γ	0 to 4 -	- Very L 10 - Lo			2 - Very Soft to 4 - Soft	1	= 1 to 10% 10 to 20%	1. S denotes sp 2. ST denotes 3				7. WH denotes 8. WR denotes	-	
	to 30 -	Mediui 50 - De	m Dense ense	5 to 8 9 t 16 to	- Medium Stiff o 15 - Stiff 30 - Very Stiff er 30 - Hard	Some =	= 20 to 35% 35 to 50%	 3. UO denotes 4. PEN denotes 5. REC denotes 6. SPT denotes 	3-inch Osterbe s penetration le s recovered len	rg undisturbed ngth of sample gth of sample.	l sample. er.	9. PP denotes I 10. FVST deno	Pocket Pen ites field va es Rock Qi	etrometer. ne shear test. uality Designation.
2) W 3) C	/ater lev	/el read and/or	lings have boulders w	on lines repres been made a vere inferred b	sent approximate bo t times and under co ased on auger chatt rade on inferred bou	nditions s er from ab	tated, fluctua oout 9 to 13.5	types, transitions tions may occur	a may be gradua due to other fac	al.				

				O EARTH TING, LL			-	PROJEC HIGH SCHOC 226 PUTNAM (VILLE, CONN	E SOLAR ARI PIKE	RAY		BORING I SHEET FILE NO. CHKD. BY	1	B-4 of <u>1</u> 0032-026.00 RPJ
Bor	ing Co.			Gei	neral Borings, Inc.			Boring Lo	cation		S	ee Boring Lo	cation Plan	
Drill		_			John Wyatt			Ground S		Not Availa		Datum		Available
_	ged By	-		Ν	lateusz Fekieta			Date Star	t	11/27/20		Date End	1	1/27/2019
	nmer T npler S				Auto Hai 1-3/8" I.D. Sr				Date	Groundwa Time	ter Readi	<u> </u>	from ground	l surface) tabilization Time
	e Drill I				D-50 AT	•			11/27/19	-	15	-		wet sample
Drill D	ing Me	thod:			3.25 Inch I.D. Hollo	w Stem Au	gers		11/27/19	-	5.5	-		3.5 hours
E P	Casing		SA	MPLE INFO	RMATION				SAMPL	E DESCRIP	TION			STRATA DESCRIPTION
т н	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)								
1														6"+/- Topsoil/ Forest Debris
2		S-1 24/8 1 to 3 1-2-4-10 Loose, gray/light brown, fine to coarse SAND and SILT, trace fine Gravel, trace Roots										SUBSOIL		
4		S-2 24/20 3 to 5 10-12-17-20 Dense grav fine to coarse SAND some fine Gravel little Silt											GODOOIL	
5	Dense, gray fine to coarse SAND, some fine Gravel, little Silt											-		
	6 S-3 24/9 5 to 7 15-17-20-20 7 Dense, gray fine to coarse SAND, some Silt, some fine to coarse Gravel													
8	8 8												-	
10 11	10 S-4 24/5 10 to 12 17-26-23-17 Dense, gray fine to coarse SAND, some Silt, little fine Gravel, moist												-	
12								Dense, gray fir	ne to coarse S	AND, some S	Silt, little fir	ne Gravel, mo	oist	_
13														TILL
14 15														
16		S-5	24/6	15 to 16.9	9-18-19-23		Dens	e, gray fine to	coarse SAND	and fine to c	oarse GR/	AVEL, some \$	Silt, wet	
17 18	-												,	-
10														
20														-
21 22	-	S-6	24/19	20 to 22	20-32-41-54		Very	dense, gray fi	ne to coarse S	SAND and SIL	T, some f	ine to coarse	Gravel	
23								END OF	EXPLORATIO	ON AT 22 FE	ET BELOV	W GRADE		
24							-							
25 26	-													
27														
28 29							-							
30														
31														
32 33														
34														
35														
36 37														
38							1							
39 40														
40	SPT	N-Val	ues	SPT	N-Values	Pro	portions				SYMBO			I
		- Very L 10 - Lo		1	2 - Very Soft to 4 - Soft		= 1 to 10% = 10 to 20%	1	plit-barrel samp				otes weight of	
	l to 30 -	Mediu 50 - De	m Dense ense	5 to 8 9 tr 16 to 3	o 4 - Soft - Medium Stiff o 15 - Stiff 30 - Very Stiff or 30 - Hard	Some =	= 10 to 20% = 20 to 35% 35 to 50%	 UO denotes PEN denote REC denote 	3-inch O.D. und 3-inch Osterbe s penetration le s recovered len s Standard Pen	rg undisturbed ength of sample ngth of sample.	sample. er.	9. PP deno 10. FVST d 11. RQD de		netrometer. ane shear test. uality Designation.
2) V	/ater lev	vel read	lings have	on lines repres been made at	ent approximate bo times and under co ased on auger chat	onditions s	tated, fluctua	types, transition tions may occur	s may be gradu due to other fa	al. ctors.				

		DO CO		D EARTH TING, LL			PROJECT HIGH SCHOO 226 PUTNAM (VILLE, CONN	L SOLAR ARI PIKE	RAY		BORING NO. SHEET FILE NO. CHKD. BY	1	B-5 of <u>1</u> 0032-026.00 RPJ
Drill	ng Co. er ged By				neral Borings, Inc. John Wyatt Aateusz Fekieta		Boring Loo Ground So Date Start	urface El.	Not Availa 11/27/20	able	ee Boring Locatic Datum Date End	Not	Available 1/27/2019
Hon	nmer T	vno:			Auto Ha		-		Groundwa	tor Poadin	ac (from	around	surface)
	npler S				1-3/8" I.D. Sj			Date	Time	Depth (ft	- · · ·		tabilization Time
	e Drill I				D-50 AT			11/27/19	-	5	-		wet sample
D	ing Me	thod:			3.25 Inch I.D. Hollo	w Stem Augers		11/27/19	-	2.5			1 hour
E P T	Casing Blows	Туре	SA REC/PEN		BLOWS PER	Core Time		SAMPL	E DESCRIP	ΓΙΟΝ			STRATA DESCRIPTION
н	(ft)	& No.	(inches)	(feet)	6 INCHES	(min./ft)							3"+/- Topsoil/ Forest Debris
1		S-1	24/9	1 to 3	3-3-7-7		Medium dense,	, brown fine to	coarse SAN	D and GRA	AVEL, some Silt		FILL
3		S-2	24/21	3 to 5	10-15-17-32		Dense, gray	fine to coarse	e SAND and S	SILT, some	e fine Gravel		-
5		S-3	24/20	5 to 7	9-19-22-29		Dense, gray	fine to coars	e SAND and	GRAVEL, I	ittle Silt, wet		-
7 8													-
9 10													TILL
11 12		S-4	24/9	10 to 12	38-19-13-10		Dense, gra	y fine to coars	e SAND and	SILT, little	fine Gravel		
12													-
14													
15 16		S-5	24/18	15 to 17	6-7-8-7			<u> </u>					-
17											ace fine Gravel		
18 19							END OF	EXPLORATIO	ON AT 17 FEI	ET BELOV	/ GRADE		
20													
21													
22 23													
24													
25 26													
20													
28													
29 30		<u> </u>				<u>+</u>							
31													
32 33													
34													
35													
36 37													
38													
39 40													
40	SPT	N-Val	ues	SPT	N-Values	Proportions				SYMBO	LKEY		l
	0 to 4 5 to to 30 -	- Very L 10 - Lo Mediur 50 - De	oose ose m Dense ense	0 to 3 5 to 8 9 t 16 to	2 - Very Soft to 4 - Soft - Medium Stiff o 15 - Stiff 30 - Very Stiff er 30 - Hard	Trace = 1 to 10% Little = 10 to 20% Some = 20 to 35% And = 35 to 50%	 S denotes s ST denotes UO denotes PEN denotes REC denote SPT denotes 	3-inch Osterbe s penetration le s recovered len	listurbed samp rg undisturbed ngth of sample ngth of sample.	le. sample. er.	7. WH denotes 8. WR denotes 9. PP denotes F 10. FVST denot	weight of i Pocket Per res field va es Rock Q	rods netrometer. ane shear test. uality Designation.
2) W	ater lev	/el read	lings have	been made a	t times and under co	undaries between soil onditions stated, fluctua ter at 5 feet, 7 to 10 fee	tions may occur	due to other fac	ctors.				

APPENDIX 3 -

LABORATORY TEST RESULTS

THIELSCH	195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398	Client Information: Down to Earth Conslting, LLC Naugatuck, CT PM: Ray Janeiro	Project Infor. Killingly High Scho Dayville, DTE Project Numbe	ol Solar Array CT
ENGINEERING	thielsch.com	Assigned By: Ray Janeiro	Summary Page:	1 of 1
	Let's Build a Solid Foundation	Collected By: Client	Report Date:	12.16.19

LABORATORY TESTING DATA SHEET, Report No.: 7419-M-118

					ld	lentific	cation Tes	sts					Corr	osivity Tests				
Boring ID	Sample No.	Depth (ft)	Laboratory No.	As Received Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Resitivity (Mohms- cm)	Sulfate (mg/kg)	Chloride (mg/kg)	Sulfide (mg/kg)	Redox Potential (mv)	рН	Electrical Resist. As Received Ohm- cm @ 60°F	Electrial Resist. Saturated Ohm- cm @ 60°F	Laboratory Log and Soil Description
				D2216	D4	318		D6913				EP	A			G	57	
B-1	Grab	0-4	19-S-2854	14.3							34	ND			5.69	40800	25800	Corrosivity Only
B-4	Grab	0-4	19-S-2855	5.1							34	ND			5.68	112000	92400	Corrosivity Only
										<u> </u>								
			1		<u> </u>			Electric	cal Resisti	vity and pH t	esting was	completed of	n 12.12.19 b	oy MN.		1	I	
												1_1						

Date Received:

12.09.19

Reviewed By:

Strao

Date Reviewed:

12.16.19

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Steve Accetta Thielsch Engineering, Inc. 195 Frances Avenue Cranston, RI 02910

RE: Killingly High School Solar Array-Down to Earth (0032-026.00) ESS Laboratory Work Order Number: 19L0241

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 3:27 pm, Dec 16, 2019

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Killingly High School Solar Array-Down to Earth

ESS Laboratory Work Order: 19L0241

SAMPLE RECEIPT

The following samples were received on December 09, 2019 for the analyses specified on the enclosed Chain of Custody Record.

The client did not deliver the samples in a cooler.

<u>Lab Number</u>	Sample Name	<u>Matrix</u>	<u>Analysis</u>
19L0241-01	B-1 S-2854	Soil	D4327
19L0241-02	B-4 S-2855	Soil	D4327

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Killingly High School Solar Array-Down to Earth

ESS Laboratory Work Order: 19L0241

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

- Semivolatile Organics Internal Standard Information
- Semivolatile Organics Surrogate Information
- Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Killingly High School Solar Array-Down to Earth

ESS Laboratory Work Order: 19L0241

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Killingly High School Solar Array-Down to Earth Client Sample ID: B-1 S-2854 Date Sampled: 12/09/19 14:30 Percent Solids: 87

ESS Laboratory Work Order: 19L0241 ESS Laboratory Sample ID: 19L0241-01 Sample Matrix: Soil

Classical Chemistry

<u>Analyte</u>	<u>Results (MRL)</u>	MDL	Method	<u>Limit</u>	DF	Analys	<u>Analyzed</u>	<u>Units</u>	Batch
Chloride	WL ND (6)		D4327		1	JLK	12/10/19 23:42	mg/kg dry	CL91042
Sulfate	WL 34 (11)		D4327		1	JLK	12/10/19 23:42	mg/kg dry	CL91042

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Killingly High School Solar Array-Down to Earth Client Sample ID: B-4 S-2855 Date Sampled: 12/09/19 14:30 Percent Solids: 90

ESS Laboratory Work Order: 19L0241 ESS Laboratory Sample ID: 19L0241-02 Sample Matrix: Soil

Classical Chemistry

<u>Analyte</u>	<u>Results (MRL)</u>	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>Units</u>	Batch
Chloride	WL ND (6)		D4327		1	JLK	12/11/19 0:15	mg/kg dry	CL91042
Sulfate	WL 34 (11)		D4327		1	JLK	12/11/19 0:15	mg/kg dry	CL91042

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc.

Client Project ID: Killingly High School Solar Array-Down to Earth

ESS Laboratory Work Order: 19L0241

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Analyte	Result	MIKL	Units	Level	Result	70KLC	Linits	KFD	Linnit	Qualifier
		(Classical Chen	nistrv						
				inoer y						
Batah Cl 01042 Concert Researching										
Batch CL91042 - General Preparation										
Blank										
Chloride	ND	0.5	mg/kg wet							
Sulfate	ND	1	mg/kg wet							
LCS										
Chloride	2		mg/L	2.500		93	85-115			
Sulfate	5		mg/L	4.994		97	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Killingly High School Solar Array-Down to Earth

ESS Laboratory Work Order: 19L0241

Notes and Definitions

WL	Results obtained from a deionized water leach of the sample.
U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit
MF	Membrane Filtration
MPN	Most Probably Number
TNTC	Too numerous to Count
CFU	Colony Forming Units
010	colony romming on the

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Killingly High School Solar Array-Down to Earth

ESS Laboratory Work Order: 19L0241

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

					# Juəu	ImoD				_												
			her	┢──									 _									`
			Other																	_		
PROJECT	its -		PDF_X	<u> </u>							 							com		Received by: (Signature)	Received by: (Signature)	4
3 PR(g Lim		Yes_X															elsch		ed by: (S	ed by: (S	
ESS LAB PROJECT ID i و Lot از	Reporting Limits		le Access_				_		-									n@thi		Receiv	Receiv	
ES	Rel	1	rable A		(177			\sim					 		Ċ			colmai		Fime	Time	
			Jelive xcel	-		ae (D432		\diamondsuit	\bigotimes		 			1 1	AGAG			m, mo		Date/Time	Date/Time	
			Electonic Deliverable Format: Excel A	·	sisylsn		container	~~> ~	<	<u>.</u>			 		4			thielsch.co				ing.
CHAIN OF CUSTODY	e Standard X Rush Approved By:	State where samples were collected: CT	for any of the following: (please circle) CT-RCP RGP DOD Other	Project # 0032-026.00	Project Name/Client Name: Killingly High School Solar Array / Down to Earth Consulting	Contract Pricing Special Pricing WO#:	Sample Identification	B-1 S-2854	B-4 S-2855					Preservation Code: 1-NP, 2-HCI, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9CH3OH		Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	Sampled by :Client / J. McDaniel	Comments: Please send report to: Rroth@thielsch.com, Saccetta@thielsch.com, mcolman@thielsch.com		ignature) per 12/9/ 4 Relinquished by: (Signature)	signature) Relinquished by: (Signature)	Please E-mail all changes to Chain of Custody in writing.
	Turn Time	State whe	Is this project MA-MCP (бг "О		Matrix	s	S					MeOH, 7-As	OA	dwater SW-S	Sampled b	Comments	(Received by: (Signatu	
	nc.	02910-2211 4486	-		Thielsch Engineering 195 Frances Ave Cranston. RI 02910		Grab -G Composite-C	ŋ	ŋ					403, 5-NaOH, 6-	ss S-Sterile V-V	ater GW-Ground		A:	رد ارد	Date/Time	Date/Time	
V	gineering, I	anston, RI ((401) 461-		Accetta	Thiels 195 Cran		Collection Time	14:30	14:30					3-H2SO4, 4-HI	AG-Amber Gla	ge WW-Wastew	s ZNo	No NA:	<u>1) 9 mu Ice</u>	16 20		
ESS Laboratory	Division of Thielsch Engineering, Inc.	185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486	www.esslaboratory.com	Project Manager: Steve Accetta			Date	12.09.19	12.09.19					le: 1-NP, 2-HCI,	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	D-Solid D-Sluds	tt Yes	Yes		gnature) 12.04.19) 15:00	gnature)	
ESS La	Division of	185 France: Tel. (401) 4	www.esslat	Project Man	Company: Address:		ESS Lab Sample ID)	h		 		 	Preservation Cod	Container Type:	Matrix: S-Soil S	Cooler Present	Seals Intact	Cooler Temperature	Relinquished by: (Signature)	Relinquišhed by: (Signature)	

Page 10 of 10

 ${\bf m}_{\rm G}$

Page _____ of

APPENDIX 4 -

INFILTRATION TEST LOGS

	O EARTH TING, LLC D ENVIRONMENTAL ENG	NEERING	Killingly High 225 P Day	g Head Test School Sola utnam Pike yville, CT . 0032-026.0	ar Array			
Test Location: Test Type: Date:	I-1 Falling Head 11/27/2019				-	Contractor: Engineer: Weather:	General Bori RPJ 30's/40's, Clo	
Ground surface El.: Top of Casing El.: Bottom of Casing El.:	0 - Unknown 0.0 -5.0	(ft.) (ft.) (ft.) Hyd	Depth to Bottom of Casing: raulic Conductivity (Kv) = π [D	5 {Ln (h1/h2) }	(ft.)] / 11 (t2-t1)	Inside Casing Diameter:	3.0	(in.)
Elapsed Time	t2 - t1	DTW	h1	h2	h= (h 4 /h 0)	Kv	Kv	Kv
(min.)	(min.)	(in.)	(in.)	(in.)	- In(h1/h2)	(in/min)	(cm/sec)	(in/hr)
1	1	0.03	60.0	60.0	0.0005	4.5E-04	1.9E-05	2.7E-02
2	1	0.06	60.0	59.9	0.0005	4.5E-04	1.9E-05	2.7E-02
3	1	0.09	59.9	59.9	0.0005	4.5E-04	1.9E-05	2.7E-02
4	1	0.13	59.9	59.9	0.0005	4.5E-04	1.9E-05	2.7E-02
5	1	0.16	59.9	59.8	0.0005	4.5E-04	1.9E-05	2.7E-02
7.5	2.5	0.19	59.8	59.8	0.0005	1.8E-04	7.6E-06	1.1E-02
10	2.5	0.21	59.8	59.8	0.0004	1.3E-04	5.5E-06	7.7E-03
15	5	0.23	59.8	59.8	0.0003	5.7E-05	2.4E-06	3.4E-03
20	5	0.25	59.8	59.8	0.0003	5.7E-05	2.4E-06	3.4E-03
30	10	0.29	59.8	59.7	0.0006	5.0E-05	2.1E-06	3.0E-03
40	10	0.32	59.7	59.7	0.0006	5.0E-05	2.1E-06	3.0E-03
50	10	0.35	59.7	59.7	0.0005	4.3E-05	1.8E-06	2.6E-03
60	10	0.38	59.7	59.6	0.0005	4.3E-05	1.8E-06	2.6E-03
80	20	0.44	59.6	59.6	0.0010	4.1E-05	1.7E-06	2.5E-03
100 120	20 20	0.50	59.6 59.5	59.5 59.4	0.0010	4.5E-05 4.5E-05	1.9E-06 1.9E-06	2.7E-03 2.7E-03
120	20	0.50	59.5	59.4	0.0011	4.3E-03	1.9E-06	2.7 ⊑-03

CONSUL	O EARTH TING, LLC	INEERING	Falling Head Test Killingly High School Solar Array 225 Putnam Pike Dayville, CT File No. 0032-026.00					
Test Location: Test Type: Date:	I-2 Falling Head 11/27/2019					Contractor: Engineer: Weather:	General Borings, Inc. RPJ 30's/40's, Cloudy	
Ground surface El.: Top of Casing El.: Bottom of Casing El.:	0.5	(ft.) (ft.) (ft.)	Depth to Bottom of Casing:	3	(ft.)	Inside Casing Diameter:	3.0	(in.)
			raulic Conductivity (Kv) = π [D] / 11 (t2-t1)			
Elapsed Time (min.)	t2 - t1 (min.)	DTW (in.)	h1 (in.)	h2 (in.)	In(h1/h2)	Kv (in/min)	Kv (cm/sec)	Kv (in/hr)
5	5	0.06	42.0	41.9	0.0015	2.6E-04	1.1E-05	1.5E-02
10	5	0.13	41.9	41.9	0.0015	2.6E-04	1.1E-05	1.5E-02
20	10	0.22	41.9	41.8	0.0022	1.9E-04	8.1E-06	1.2E-02
30	10	0.30	41.8	41.7	0.0019	1.6E-04	6.8E-06	9.6E-03
40	10	0.38	41.7	41.6	0.0019	1.6E-04	6.8E-06	9.6E-03
60	20	0.53	41.6	41.5	0.0038	1.6E-04	6.8E-06	9.7E-03
80	20	0.66	41.5	41.3	0.0030	1.3E-04	5.5E-06	7.8E-03
110	30	0.84	41.3	41.2	0.0045	1.3E-04	5.5E-06	7.8E-03
140	30	1.03	41.2	41.0	0.0046	1.3E-04	5.5E-06	7.8E-03

APPENDIX 5 -

LIMITATIONS

LIMITATIONS

Explorations

- 1. The analyses and recommendations submitted in this report are based in part upon the data obtained from subsurface explorations by Down To Earth Consulting, LLC (DTE). The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more erratic. For specific information, refer to the boring logs.
- 3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, tidal, temperature, and other factors occurring since the time measurements were made.

<u>Review</u>

4. In the event that any changes in the nature, design or location of the proposed solar arrays are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by DTE. It is recommended that this firm be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications.

Construction

5. It is recommended that this firm be retained to provide soil engineering services during construction of the earthworks and foundation phases of the work. This is to observe compliance with the design concepts, specifications, and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to start of construction.

Use of Report

- 6. This report has been prepared for the exclusive use of All-Points Technology Corporation, PC for specific application to the project noted in this geotechnical report in accordance with generally accepted soil and foundation engineering practices. No other warranty, express or implied, is made.
- 7. This soil and foundation engineering report has been prepared for this project by DTE. This report is for design purposes only and is not sufficient to prepare an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to design considerations only.
- 8. This report may contain comparative cost estimates for the purpose of evaluating alternative foundation schemes. These estimates may also involve approximate quantity evaluations. It should be noted that quantity estimates may not be accurate enough for construction bids. Since DTE has no control over labor and materials cost and design, the estimates of construction costs have been made on the basis of experience. DTE does not guarantee the accuracy of cost estimates as compared to contractor's bids for construction costs.